
LumenX-MCP Legal Spend Intelligence Server
MCP server that enables intelligent analysis of legal spend data across multiple sources (LegalTracker, databases, CSV/Excel files), providing features like spend summaries, vendor performance analysis, and budget comparisons.
README
LumenX-MCP Legal Spend Intelligence Server
A Model Context Protocol (MCP) server for intelligent legal spend analysis across multiple data sources. Part of the LumenX suite powered by DatSciX.
🚀 Features
- Multi-Source Integration: Connect to multiple data sources simultaneously
- LegalTracker API integration
- Database support (PostgreSQL, SQL Server, Oracle)
- File imports (CSV, Excel)
- Comprehensive Analytics:
- Spend summaries by period, department, practice area
- Vendor performance analysis
- Budget vs. actual comparisons
- Transaction search capabilities
- MCP Compliant: Full implementation of Model Context Protocol standards
- Async Architecture: High-performance asynchronous data processing
- Extensible Design: Easy to add new data sources and analytics
📋 Prerequisites
- Python 3.10 or higher
- Access to one or more supported data sources
- MCP-compatible client (e.g., Claude Desktop)
🛠️ Installation
Using pip
pip install legal-spend-mcp
From Source
# Clone the repository
git clone https://github.com/DatSciX-CEO/LumenX-MCP.git
cd LumenX-MCP
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -e .
Using uv (recommended)
# Install uv if not already installed
pip install uv
# Clone and install
git clone https://github.com/DatSciX-CEO/LumenX-MCP.git
cd LumenX-MCP
uv pip install -e .
⚙️ Configuration
- Copy the environment template:
cp .env.template .env
- Edit
.env
with your data source credentials:
# Enable the data sources you want to use
LEGALTRACKER_ENABLED=true
LEGALTRACKER_API_KEY=your_api_key_here
LEGALTRACKER_BASE_URL=https://api.legaltracker.com
# Database connections (optional)
SAP_ENABLED=false
SAP_HOST=your_sap_host
SAP_PORT=1433
SAP_DATABASE=your_database
SAP_USER=your_username
SAP_PASSWORD=your_password
# File sources (optional)
CSV_ENABLED=true
CSV_FILE_PATH=/path/to/legal_spend.csv
🚀 Quick Start
Running the Server
# Using the installed command
legal-spend-mcp
# Or using Python
python -m legal_spend_mcp.server
Configure with Claude Desktop
Add to your Claude Desktop configuration (claude_config.json
):
{
"mcpServers": {
"legal-spend": {
"command": "legal-spend-mcp",
"env": {
"LEGALTRACKER_ENABLED": "true",
"LEGALTRACKER_API_KEY": "your_api_key"
}
}
}
}
📚 Available Tools
get_legal_spend_summary
Get aggregated spend data with filtering options.
Parameters:
start_date
(required): Start date in YYYY-MM-DD formatend_date
(required): End date in YYYY-MM-DD formatdepartment
(optional): Filter by departmentpractice_area
(optional): Filter by practice areavendor
(optional): Filter by vendor namedata_source
(optional): Query specific data source
Example:
result = await get_legal_spend_summary(
start_date="2024-01-01",
end_date="2024-12-31",
department="Legal"
)
get_vendor_performance
Analyze performance metrics for a specific vendor.
Parameters:
vendor_name
(required): Name of the vendorstart_date
(required): Start date in YYYY-MM-DD formatend_date
(required): End date in YYYY-MM-DD formatinclude_benchmarks
(optional): Include industry comparisons
get_budget_vs_actual
Compare actual spending against budgeted amounts.
Parameters:
department
(required): Department namestart_date
(required): Start date in YYYY-MM-DD formatend_date
(required): End date in YYYY-MM-DD formatbudget_amount
(required): Budget amount to compare
search_legal_transactions
Search for specific transactions across all data sources.
Parameters:
search_term
(required): Search querystart_date
(optional): Start date filterend_date
(optional): End date filtermin_amount
(optional): Minimum amount filtermax_amount
(optional): Maximum amount filterlimit
(optional): Maximum results (default: 50)
📊 Resources
The server provides several MCP resources for reference data:
- legal_vendors: List of all vendors across data sources
- data_sources: Status and configuration of data sources
- spend_categories: Available categories and practice areas
- spend_overview://recent: Recent spend activity overview
🔌 Supported Data Sources
LegalTracker API
- Real-time invoice and matter data
- Vendor management information
- Practice area classifications
Databases
- PostgreSQL: Full support for legal spend tables
- SQL Server: Compatible with SAP and other ERP systems
- Oracle: Enterprise financial system integration
File Imports
- CSV: Standard comma-separated values
- Excel: .xlsx files with configurable sheet names
📝 Data Model
The server uses a standardized data model for legal spend records:
@dataclass
class LegalSpendRecord:
invoice_id: str
vendor_name: str
vendor_type: VendorType
matter_id: Optional[str]
matter_name: Optional[str]
department: str
practice_area: PracticeArea
invoice_date: date
amount: Decimal
currency: str
expense_category: str
description: str
# ... additional fields
🧪 Testing
Run the test suite:
# Run all tests
pytest
# Run with coverage
pytest --cov=legal_spend_mcp
# Run specific test file
pytest tests/test_server.py
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Please ensure:
- All tests pass
- Code follows the project style guide
- Documentation is updated
- Commit messages are descriptive
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built on the Model Context Protocol
- Powered by DatSciX
- Part of the LumenX suite of enterprise tools
📞 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: patrick@datscix.com
🗺️ Roadmap
- [ ] Additional data source integrations
- [ ] Machine learning-based spend predictions
- [ ] Automated anomaly detection
- [ ] Enhanced benchmark analytics
- [ ] GraphQL API support
- [ ] Real-time notifications
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。