LumenX-MCP Legal Spend Intelligence Server

LumenX-MCP Legal Spend Intelligence Server

MCP server that enables intelligent analysis of legal spend data across multiple sources (LegalTracker, databases, CSV/Excel files), providing features like spend summaries, vendor performance analysis, and budget comparisons.

Category
访问服务器

README

LumenX-MCP Legal Spend Intelligence Server

License: MIT Python 3.10+ MCP Compatible

A Model Context Protocol (MCP) server for intelligent legal spend analysis across multiple data sources. Part of the LumenX suite powered by DatSciX.

🚀 Features

  • Multi-Source Integration: Connect to multiple data sources simultaneously
    • LegalTracker API integration
    • Database support (PostgreSQL, SQL Server, Oracle)
    • File imports (CSV, Excel)
  • Comprehensive Analytics:
    • Spend summaries by period, department, practice area
    • Vendor performance analysis
    • Budget vs. actual comparisons
    • Transaction search capabilities
  • MCP Compliant: Full implementation of Model Context Protocol standards
  • Async Architecture: High-performance asynchronous data processing
  • Extensible Design: Easy to add new data sources and analytics

📋 Prerequisites

  • Python 3.10 or higher
  • Access to one or more supported data sources
  • MCP-compatible client (e.g., Claude Desktop)

🛠️ Installation

Using pip

pip install legal-spend-mcp

From Source

# Clone the repository
git clone https://github.com/DatSciX-CEO/LumenX-MCP.git
cd LumenX-MCP

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -e .

Using uv (recommended)

# Install uv if not already installed
pip install uv

# Clone and install
git clone https://github.com/DatSciX-CEO/LumenX-MCP.git
cd LumenX-MCP
uv pip install -e .

⚙️ Configuration

  1. Copy the environment template:
cp .env.template .env
  1. Edit .env with your data source credentials:
# Enable the data sources you want to use
LEGALTRACKER_ENABLED=true
LEGALTRACKER_API_KEY=your_api_key_here
LEGALTRACKER_BASE_URL=https://api.legaltracker.com

# Database connections (optional)
SAP_ENABLED=false
SAP_HOST=your_sap_host
SAP_PORT=1433
SAP_DATABASE=your_database
SAP_USER=your_username
SAP_PASSWORD=your_password

# File sources (optional)
CSV_ENABLED=true
CSV_FILE_PATH=/path/to/legal_spend.csv

🚀 Quick Start

Running the Server

# Using the installed command
legal-spend-mcp

# Or using Python
python -m legal_spend_mcp.server

Configure with Claude Desktop

Add to your Claude Desktop configuration (claude_config.json):

{
  "mcpServers": {
    "legal-spend": {
      "command": "legal-spend-mcp",
      "env": {
        "LEGALTRACKER_ENABLED": "true",
        "LEGALTRACKER_API_KEY": "your_api_key"
      }
    }
  }
}

📚 Available Tools

get_legal_spend_summary

Get aggregated spend data with filtering options.

Parameters:

  • start_date (required): Start date in YYYY-MM-DD format
  • end_date (required): End date in YYYY-MM-DD format
  • department (optional): Filter by department
  • practice_area (optional): Filter by practice area
  • vendor (optional): Filter by vendor name
  • data_source (optional): Query specific data source

Example:

result = await get_legal_spend_summary(
    start_date="2024-01-01",
    end_date="2024-12-31",
    department="Legal"
)

get_vendor_performance

Analyze performance metrics for a specific vendor.

Parameters:

  • vendor_name (required): Name of the vendor
  • start_date (required): Start date in YYYY-MM-DD format
  • end_date (required): End date in YYYY-MM-DD format
  • include_benchmarks (optional): Include industry comparisons

get_budget_vs_actual

Compare actual spending against budgeted amounts.

Parameters:

  • department (required): Department name
  • start_date (required): Start date in YYYY-MM-DD format
  • end_date (required): End date in YYYY-MM-DD format
  • budget_amount (required): Budget amount to compare

search_legal_transactions

Search for specific transactions across all data sources.

Parameters:

  • search_term (required): Search query
  • start_date (optional): Start date filter
  • end_date (optional): End date filter
  • min_amount (optional): Minimum amount filter
  • max_amount (optional): Maximum amount filter
  • limit (optional): Maximum results (default: 50)

📊 Resources

The server provides several MCP resources for reference data:

  • legal_vendors: List of all vendors across data sources
  • data_sources: Status and configuration of data sources
  • spend_categories: Available categories and practice areas
  • spend_overview://recent: Recent spend activity overview

🔌 Supported Data Sources

LegalTracker API

  • Real-time invoice and matter data
  • Vendor management information
  • Practice area classifications

Databases

  • PostgreSQL: Full support for legal spend tables
  • SQL Server: Compatible with SAP and other ERP systems
  • Oracle: Enterprise financial system integration

File Imports

  • CSV: Standard comma-separated values
  • Excel: .xlsx files with configurable sheet names

📝 Data Model

The server uses a standardized data model for legal spend records:

@dataclass
class LegalSpendRecord:
    invoice_id: str
    vendor_name: str
    vendor_type: VendorType
    matter_id: Optional[str]
    matter_name: Optional[str]
    department: str
    practice_area: PracticeArea
    invoice_date: date
    amount: Decimal
    currency: str
    expense_category: str
    description: str
    # ... additional fields

🧪 Testing

Run the test suite:

# Run all tests
pytest

# Run with coverage
pytest --cov=legal_spend_mcp

# Run specific test file
pytest tests/test_server.py

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Please ensure:

  • All tests pass
  • Code follows the project style guide
  • Documentation is updated
  • Commit messages are descriptive

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support

🗺️ Roadmap

  • [ ] Additional data source integrations
  • [ ] Machine learning-based spend predictions
  • [ ] Automated anomaly detection
  • [ ] Enhanced benchmark analytics
  • [ ] GraphQL API support
  • [ ] Real-time notifications

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选