
LW MCP Agents
A lightweight framework for building and orchestrating AI agents through the Model Context Protocol, enabling users to create scalable multi-agent systems using only configuration files.
README
🚀 LW MCP Agents
LW MCP Agents is a lightweight, modular framework for building and orchestrating AI agents using the Model Context Protocol (MCP). It empowers you to rapidly design multi-agent systems where each agent can specialize, collaborate, delegate, and reason—without writing complex orchestration logic.
Build scalable, composable AI systems using only configuration files.
🔍 Why Use LW MCP Agents?
- ✅ Plug-and-Play Agents: Launch intelligent agents with zero boilerplate using simple JSON configs.
- ✅ Multi-Agent Orchestration: Chain agents together to solve complex tasks—no extra code required.
- ✅ Share & Reuse: Distribute and run agent configurations across environments effortlessly.
- ✅ MCP-Native: Seamlessly integrates with any MCP-compatible platform, including Claude Desktop.
🧠 What Can You Build?
- Research agents that summarize documents or search the web
- Orchestrators that delegate tasks to domain-specific agents
- Systems that scale reasoning recursively and aggregate capabilities dynamically
🏗️ Architecture at a Glance
📚 Table of Contents
- Getting Started
- Example Agents
- Running Agents
- Custom Agent Creation
- How It Works
- Technical Architecture
- Acknowledgements
🚀 Getting Started
🔧 Installation
git clone https://github.com/Autumn-AIs/LW-MCP-agents.git
cd LW-MCP-agents
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
▶️ Run Your First Agent
python src/agent/agent_runner.py --config examples/base_agent/base_agent_config.json
🤖 Try a Multi-Agent Setup
Terminal 1 (Research Agent Server):
python src/agent/agent_runner.py --config examples/orchestrator_researcher/research_agent_config.json --server-mode
Terminal 2 (Orchestrator Agent):
python src/agent/agent_runner.py --config examples/orchestrator_researcher/master_orchestrator_config.json
Your orchestrator now intelligently delegates research tasks to the research agent.
🖥️ Claude Desktop Integration
Configure agents to run inside Claude Desktop:
1. Locate your Claude config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- Linux:
~/.config/Claude/claude_desktop_config.json
2. Add your agent under mcpServers
:
{
"mcpServers": {
"research-agent": {
"command": "/bin/bash",
"args": ["-c", "/path/to/venv/bin/python /path/to/agent_runner.py --config=/path/to/agent_config.json --server-mode"],
"env": {
"PYTHONPATH": "/path/to/project",
"PATH": "/path/to/venv/bin:/usr/local/bin:/usr/bin"
}
}
}
}
📦 Example Agents
-
Base Agent
A minimal agent that connects to tools via MCP.
📁examples/base_agent/
-
Orchestrator + Researcher
Demonstrates hierarchical delegation and capability sharing.
📁examples/orchestrator_researcher/
💡 Contribute your own example! Submit a PR or reach out to the maintainers.
⚙️ Running Agents
🔹 Basic Command
python src/agent/agent_runner.py --config <your_config.json>
🔸 Advanced Options
Option | Description |
---|---|
--server-mode |
Exposes the agent as an MCP server |
--server-name |
Assigns a custom MCP server name |
🛠️ Custom Agent Creation
🧱 Minimal Config
{
"agent_name": "my-agent",
"llm_provider": "groq",
"llm_api_key": "YOUR_API_KEY",
"server_mode": false
}
🧠 Adding Capabilities
Define specialized functions the agent can reason over:
"capabilities": [
{
"name": "summarize_document",
"description": "Summarize a document in a concise way",
"input_schema": {
"type": "object",
"properties": {
"document_text": { "type": "string" },
"max_length": { "type": "integer", "default": 200 }
},
"required": ["document_text"]
},
"prompt_template": "Summarize the following document in {max_length} words:\n\n{document_text}"
}
]
🔄 Orchestrator Agent
{
"agent_name": "master-orchestrator",
"servers": {
"research-agent": {
"command": "python",
"args": ["src/agent/agent_runner.py", "--config=research_agent_config.json", "--server-mode"]
}
}
}
🧬 How It Works
🧩 Capabilities as Reasoning Units
Each capability:
- Fills in a prompt using provided arguments
- Executes internal reasoning using LLMs
- Uses tools or external agents
- Returns the result
📖 Research Example
[INFO] agent:master-orchestrator - Executing tool: research_topic
[INFO] agent:research-agent - Using tool: brave_web_search
[INFO] agent:research-agent - Finished capability: research_topic
🧱 Technical Architecture
🧠 Key Components
Component | Role |
---|---|
AgentServer |
Starts, configures, and runs an agent |
MCPServerWrapper |
Wraps the agent to expose it over MCP |
CapabilityRegistry |
Loads reasoning tasks from config |
ToolRegistry |
Discovers tools from other agents |
🌐 Architecture Highlights
- Hierarchical Design: Compose systems of agents with recursive reasoning
- Delegated Capabilities: Agents delegate intelligently to peers
- Tool Sharing: Tools available in one agent become accessible to others
- Code-Free Composition: Create entire systems via configuration
🙌 Acknowledgements
This project draws inspiration from the brilliant work on mcp-agents by LastMile AI.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。