Maiga API MCP Server

Maiga API MCP Server

Provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token technicals, social sentiment tracking, and KOL insights. It enables AI assistants to retrieve market reports, trending token data, and detailed on-chain information.

Category
访问服务器

README

Maiga API MCP Server

A Model Context Protocol (MCP) server that provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token analysis, market reports, KOL insights, and trending token discovery.

Overview

This MCP server enables AI assistants and applications to interact with Maiga's cryptocurrency analysis platform through a standardized protocol. It provides access to technical and fundamental analysis, social sentiment analysis, token holder information, market reports, KOL (Key Opinion Leader) analytics, and trending token discovery.

Features

Available Tools

  • Token Analysis (maiga_analyse_token) - Performs comprehensive technical and fundamental analysis on cryptocurrency tokens
  • Mindshare Analysis (maiga_mindshare) - Analyzes social media sentiment and trending discussions about tokens over the last 24 hours
  • Token Information (maiga_token_info) - Retrieves detailed token holder information and on-chain analysis
  • Market Reports (maiga_market_report) - Generates specialized market reports (Market Behavior, Open Interest, Multi-Timeframe, Fund Flow)
  • KOL Analysis (maiga_kol_analysis) - Analyzes the influence and statistics of cryptocurrency influencers on X (Twitter)
  • Trending Tokens (maiga_trending_tokens) - Retrieves top trending tokens in the last 24 hours based on social media mentions and activity

Prerequisites

  • Node.js (v16 or higher)
  • npm, yarn, pnpm, or bun
  • Maiga Partner API token (contact your account manager to obtain)

Installation

  1. Clone the repository:
git clone <repository-url>
cd maiga
  1. Install dependencies:
npm install
  1. Obtain a Maiga Partner API token:
    • Contact your Maiga account manager to obtain your partner API token
    • Keep your API token secure and ready for configuration

Configuration

The server requires the following configuration:

  • apiToken (required): Your Maiga Partner API token for authentication

Configuration Methods

1. Smithery Playground (Development)

When running npm run dev, the Smithery Playground will open in your browser. Enter your apiToken in the configuration section.

2. URL Parameters (Testing)

When connecting via HTTP, pass configuration as URL query parameters:

http://localhost:8081/mcp?apiToken=your_api_token_here

3. Production Configuration

Once deployed to Smithery, users can securely manage their configurations through the configuration UI. Saved configurations are automatically applied when connecting to the server.

Development

Start the development server:

npm run dev

This will:

  • Start the MCP server on port 8081 (or custom port with --port flag)
  • Enable hot reloading
  • Open the Smithery Playground in your browser for testing

Build

Build for production:

npm run build

Creates a bundled server in .smithery/ directory.

Usage

With MCP-Compatible Applications

This server can be used with any application that supports the Model Context Protocol, such as:

  • Claude Desktop
  • MCP-enabled IDEs
  • Custom MCP clients
  • Smithery Playground

Tool Examples

Analyze a token:

maiga_analyse_token(identifier: "bitcoin")

Get mindshare analysis:

maiga_mindshare(identifier: "ethereum")

Get token holder information:

maiga_token_info(identifier: "0x1234567890abcdef...")

Generate market report:

maiga_market_report(mode: "Market_Behavior")

Analyze a KOL:

maiga_kol_analysis(username: "cz_binance")

Get trending tokens:

maiga_trending_tokens()

API Reference

Token Operations

  • maiga_analyse_token(identifier) - Comprehensive token analysis

    • Parameters:
      • identifier (string, required): Token symbol (e.g., "bitcoin", "ethereum", "BTC") or contract address
    • Returns: Technical analysis, price data, market cap, links, and analysis text
  • maiga_mindshare(identifier) - Social media sentiment analysis

    • Parameters:
      • identifier (string, required): Token symbol or contract address
    • Returns: Social sentiment analysis and trending discussions from the last 24 hours
  • maiga_token_info(identifier) - Token holder and on-chain analysis

    • Parameters:
      • identifier (string, required): Token contract address or identifier
    • Returns: Top holders, holder distribution analysis, and token information

Market Analysis

  • maiga_market_report(mode) - Generate market reports
    • Parameters:
      • mode (enum, required): Analysis mode
        • "Market_Behavior" - Overall market sentiment and behavior patterns
        • "Open_Interest" - Futures and derivatives open interest analysis
        • "Multi_Timeframe" - Multi-timeframe technical analysis
        • "Fund_Flow" - Capital flow and whale movement analysis
    • Returns: Mode-specific market analysis data

Social & Influencer Analysis

  • maiga_kol_analysis(username) - KOL influence analysis

    • Parameters:
      • username (string, required): Twitter username without @ symbol (e.g., "cz_binance")
    • Returns: Follower count, engagement metrics, reach statistics, and influence analysis
  • maiga_trending_tokens() - Get trending tokens

    • Parameters: None
    • Returns: Top trending tokens from the last 24 hours with mentions, sentiment, and trend data

Rate Limiting

The Maiga API enforces rate limiting:

  • Limit: 1000 requests per hour per IP address
  • Window: 3600 seconds (1 hour)

If you exceed the rate limit, you will receive a 429 Too Many Requests response with information about when you can retry. The server handles rate limit errors gracefully and provides clear error messages.

Error Handling

The server includes comprehensive error handling for:

  • API authentication failures (401 Unauthorized)
  • Invalid request parameters (400 Bad Request)
  • Rate limit exceeded (429 Too Many Requests)
  • Network connectivity issues
  • Invalid parameter validation
  • Maiga API errors (500 Internal Server Error)

All errors are returned as structured responses with descriptive messages. Rate limit errors include retry-after information.

Security

  • API tokens are required and validated at connection time
  • All requests use HTTPS
  • Input validation using Zod schemas
  • No sensitive data is logged in production
  • API tokens should never be exposed in client-side code or public repositories

Tech Stack

  • Runtime: TypeScript
  • MCP SDK: @modelcontextprotocol/sdk
  • HTTP Client: Native fetch API
  • Validation: Zod
  • Development: Smithery CLI
  • Build Tool: Smithery Build

Project Structure

maiga/
├── src/
│   └── index.ts          # Main server implementation with all tools
├── package.json          # Project dependencies and scripts
├── smithery.yaml         # Runtime specification
└── README.md            # This file

Deploy

Ready to deploy? Push your code to GitHub and deploy to Smithery:

  1. Create a new repository at github.com/new

  2. Initialize git and push to GitHub:

    git add .
    git commit -m "Initial commit"
    git remote add origin https://github.com/YOUR_USERNAME/YOUR_REPO.git
    git push -u origin main
    
  3. Deploy your server to Smithery at smithery.ai/new

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

ISC

Support

For issues related to:

Learn More

Changelog

v1.0.0

  • Initial release with full Maiga API integration
  • Support for all 6 Maiga API endpoints:
    • Token Analysis
    • Mindshare Analysis
    • Token Information
    • Market Reports
    • KOL Analysis
    • Trending Tokens
  • Comprehensive error handling and validation
  • Rate limit handling
  • Full TypeScript type safety

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选