Managed Notifications Search MCP Server

Managed Notifications Search MCP Server

Enables AI agents to search through OpenShift service notification logs using semantic search powered by ChromaDB and sentence transformers, helping find relevant notifications based on problem descriptions with metadata enrichment and variable interpolation support.

Category
访问服务器

README

Managed Notifications Search MCP Server

An MCP (Model Context Protocol) server that enables AI agents to search through OpenShift service notification logs using semantic search powered by ChromaDB and sentence transformers.

Overview

This server provides semantic search capabilities over OpenShift service notification JSON files, allowing AI agents to find relevant notifications based on problem descriptions. The system uses vector embeddings to enable semantic matching rather than just keyword search.

Features

  • Semantic Search: Find notifications based on problem descriptions using vector similarity
  • Metadata Enrichment: Results include folder categories (hcp, osd, rosa, etc.), severity levels, and full notification data
  • Efficient Container Deployment: Multi-stage Docker build with optimized layering for embedding regeneration
  • Database Statistics: Get insights into available notifications and categories

Installation

Prerequisites

  • Python 3.13+
  • uv (Python package manager)
  • Git with submodules
  • Podman or Docker (for containerized deployment)

Local Development

  1. Clone and setup the repository:

    git clone <repository-url>
    cd managed-notifications-mcp
    git submodule update --init --recursive
    
  2. Install dependencies:

    uv sync
    
  3. Build the embeddings database:

    uv run build-embeddings
    
  4. Run the MCP server:

    uv run serve
    

Container Deployment

  1. Build the container:

    podman build -t managed-notifications-search .
    
  2. Run the container:

    podman run -p 8000:8000 managed-notifications-search
    

MCP Client Configuration

To connect to the server from an MCP client, use the provided configuration file:

File: mcp-config.json

{
  "mcpServers": {
    "service-logs": {
      "type": "http",
      "url": "http://localhost:8000/mcp",
      "auth": {}
    }
  }
}

This configuration enables MCP clients (like Claude Desktop) to connect to the running server on localhost port 8000.

Usage

The server provides two main MCP tools:

search_service_logs

Search for notifications matching a problem statement.

Parameters:

  • problem_statement (required): Description of the issue to search for
  • max_results (optional, default: 5): Maximum number of results to return

Example:

# Search for pod scheduling issues
results = search_service_logs(
    problem_statement="pods stuck in pending state unable to schedule",
    max_results=3
)

Important Note on Variable Interpolation: Many service notifications contain variable placeholders like ${TIME}, ${REASON}, ${POD}, ${NAMESPACE} that need to be replaced with actual values. When using this tool:

  1. Check the variables field in each result to see what variables need interpolation
  2. Ask users for specific values for each variable when presenting a notification
  3. Help interpolate variables into the notification text before sending to customers

Common variables include:

  • ${TIME}: Timestamp when the issue occurred
  • ${REASON}: Specific reason for the failure
  • ${POD}: Name of the affected pod
  • ${NAMESPACE}: Kubernetes namespace
  • ${CLUSTER_ID}: Cluster identifier
  • ${NUM_OF_WORKERS}: Number of worker nodes

get_database_stats

Get statistics about the notification database.

Returns:

  • Total number of notifications
  • Available folder categories
  • Severity levels
  • Service names
  • Database path

Architecture

Components

  1. Embedding Script (scripts/build_embeddings.py):

    • Processes all JSON files in the managed-notifications submodule
    • Extracts searchable text from notification fields
    • Creates vector embeddings using sentence-transformers
    • Stores embeddings in ChromaDB with metadata
  2. MCP Server (main.py):

    • FastMCP-based server with search tools
    • Loads pre-built ChromaDB database on startup
    • Provides semantic search and database statistics
  3. Container Configuration:

    • Multi-stage build separating embedding creation from runtime
    • Optimized layering to minimize rebuilds
    • Non-root user for security

Data Flow

  1. Build Phase: JSON files � Text extraction � Vector embeddings � ChromaDB
  2. Runtime Phase: Problem statement � Query embedding � Similarity search � Formatted results

Notification Categories

The system organizes notifications by folder structure:

  • hcp: Hosted Control Plane notifications
  • osd: OpenShift Dedicated notifications
  • rosa: Red Hat OpenShift Service on AWS notifications
  • cluster: General cluster notifications
  • ocm: OpenShift Cluster Manager notifications

Development

Project Structure

├── main.py                    # MCP server implementation
├── scripts/
│   └── build_embeddings.py   # Embedding creation script
├── managed-notifications/     # Git submodule with notification JSONs
├── Containerfile             # Multi-stage container build
├── .containerignore          # Container build exclusions
└── pyproject.toml            # Python dependencies

Embedding Model

The system uses the all-MiniLM-L6-v2 sentence transformer model by default. You can override this by setting the EMBEDDING_MODEL environment variable in the embedding script.

Database Structure

Each notification is stored with:

  • Document: Concatenated searchable text (summary, description, tags, etc.)
  • Metadata: File path, folder category, severity, service name, variables list, full JSON
  • Embedding: 384-dimensional vector (for default model)
  • Variables: Extracted variable placeholders (e.g., ["TIME", "REASON", "POD"]) for interpolation

Contributing

  1. Ensure the managed-notifications submodule is up to date
  2. Run the embedding script after notification changes
  3. Test both local and containerized deployments
  4. Validate search results for accuracy and relevance

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选