Mandoline MCP Server
Enables AI assistants to reflect on, critique, and continuously improve their performance using Mandoline's evaluation framework. Provides tools for creating custom evaluation metrics and scoring prompt/response pairs to measure AI assistant quality.
README
Mandoline MCP Server
Enable AI assistants like Claude Code, Claude Desktop, and Cursor to reflect on, critique, and continuously improve their own performance using Mandoline's evaluation framework via the Model Context Protocol.
Client Setup
Most users should start here. Use Mandoline's hosted MCP server to integrate evaluation tools into your AI assistant.
For each integration below, replace sk_**** with your actual API key from mandoline.ai/account.
Claude Code
Use the CLI to add the Mandoline MCP server to Claude Code:
claude mcp add --scope user --transport http mandoline https://mandoline.ai/mcp --header "x-api-key: sk_****"
You can use --scope user (across projects) or --scope project (current project only).
Note: Restart any active Claude Code sessions after configuration changes.
Verify: Run /mcp in Claude Code to see Mandoline listed as an active server.
Official Documentation: Claude Code MCP Guide
Claude Desktop
Edit your configuration file (Settings > Developer > Edit Config):
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"Mandoline": {
"command": "npx",
"args": [
"-y",
"mcp-remote",
"https://mandoline.ai/mcp",
"--header",
"x-api-key: ${MANDOLINE_API_KEY}"
],
"env": {
"MANDOLINE_API_KEY": "sk_****"
}
}
}
}
This configuration applies globally to all conversations.
Note: Restart Claude Desktop after configuration changes.
Verify: Look for Mandoline tools when you click the "Search and tools" button.
Official Documentation: MCP Quickstart Guide
Cursor
Create or edit your MCP configuration file:
{
"mcpServers": {
"Mandoline": {
"url": "https://mandoline.ai/mcp",
"headers": {
"x-api-key": "sk_****"
}
}
}
}
You can use your global configuration (affects all projects) ~/.cursor/mcp.json or project-local configuration (current project only) .cursor/mcp.json (in project root)
Note: Restart Cursor after configuration changes.
Verify: Check the Output panel (Ctrl+Shift+U) → "MCP Logs" for successful connection, or look for Mandoline tools in the Composer Agent.
Official Documentation: Cursor MCP Guide
Server Setup
Only needed if you want to run the server locally or contribute to development. Most users should use the hosted server above.
Prerequisites: Node.js 18+ and npm
Installation
-
Clone and build
git clone https://github.com/mandoline-ai/mandoline-mcp-server.git cd mandoline-mcp-server npm install npm run build -
Configure environment (optional)
cp .env.example .env.local # Edit .env.local to customize PORT, LOG_LEVEL, etc. -
Start the server
npm start
The server runs on http://localhost:8080 by default.
Using Local Server
To use your local server instead of the hosted one, replace https://mandoline.ai/mcp with http://localhost:8080/mcp in the client configurations above.
Usage
Once integrated, you can use Mandoline evaluation tools directly in your AI assistant conversations.
Tools
Metrics
| Tool | Purpose |
|---|---|
create_metric |
Define custom evaluation criteria for your specific tasks |
batch_create_metrics |
Create multiple evaluation metrics in one operation |
get_metric |
Retrieve details about a specific metric |
get_metrics |
Browse your metrics with filtering and pagination |
update_metric |
Modify existing metric definitions |
Evaluations
| Tool | Purpose |
|---|---|
create_evaluation |
Score prompt/response pairs against your metrics |
batch_create_evaluations |
Evaluate the same content against multiple metrics |
get_evaluation |
Retrieve evaluation results and scores |
get_evaluations |
Browse evaluation history with filtering and pagination |
update_evaluation |
Add metadata or context to evaluations |
Resources
Access Mandoline's documentation and reference materials directly in your AI assistant, including model comparison guides and evaluation best practices.
Support
- Platform: https://mandoline.ai - Create account and get API keys
- Documentation: https://mandoline.ai/docs - Evaluation guides and best practices
- Issues: GitHub Issues - Bug reports and feature requests
- Email: support@mandoline.ai - Direct support
License
Apache-2.0 License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。