Manim MCP Server
Enables compilation and serving of Manim animations through natural language. Supports compiling Manim Python code into videos and downloading the generated animations with secure authentication.
README
Manim MCP Server
A Model Context Protocol (MCP) server for compiling and serving Manim animations.
🎯 Two Server Modes
- HTTP API Server (
app/server.py) - For REST API calls, testing, and web integration - Standard MCP Server (
mcp_server.py) - For Claude Desktop, Dify, and other MCP clients
See MCP_SETUP.md for detailed MCP configuration instructions.
A FastAPI-based MCP (Model Control Protocol) server that provides two main tools:
- Manim Compile: Compile Manim code and return a video ID
- Video Download: Download a compiled Manim video by ID
Features
- Secure authentication using JWT tokens
- LangGraph integration for workflow management
- Support for different video qualities and resolutions
- Simple API endpoints for integration
Prerequisites
- Python 3.8+
- Manim Community Edition (v0.19.0 or later)
- FFmpeg
- Required Python packages (see
requirements.txt)
Installation
-
Clone the repository:
git clone <repository-url> cd manim-mcp-server -
Create a virtual environment and activate it:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate -
Install the required packages:
pip install -r requirements.txt -
Install Manim and its dependencies:
pip install manim
Configuration
- Set up environment variables (create a
.envfile):SECRET_KEY=your-secret-key-here ACCESS_TOKEN_EXPIRE_MINUTES=30
Running the Server
Option 1: Using the startup script (recommended)
./start_server.sh
Option 2: Using uvicorn directly
uvicorn app.server:app --reload
The server will be available at http://localhost:8000
API Documentation
Once the server is running, you can access the interactive API documentation at:
- Swagger UI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
API Endpoints
Root
GET /- Get server information and available tools
Manim Compilation
-
POST /tools/manim_compile- Compile Manim code{ "parameters": { "code": "from manim import *\nclass Example(Scene):\n def construct(self):\n circle = Circle()\n self.play(Create(circle))", "scene_name": "Example" } }Parameters:
code(required): The Manim Python code to compilescene_name(required): Name of the specific scene class to compile
Video Download
GET /videos/{file_id}- Download a compiled video by ID
LangGraph Compatible Endpoints
GET /v1/tools- List all available toolsPOST /v1/tools/call- Call a tool (LangGraph compatible){ "tool": "manim_compile", "parameters": { "code": "from manim import *\nclass Example(Scene):\n def construct(self):\n circle = Circle()\n self.play(Create(circle))" } }
Example Usage
1. Check server status
curl http://localhost:8000/
2. Compile Manim code
curl -X 'POST' \
'http://localhost:8000/tools/manim_compile' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"parameters": {
"code": "from manim import *\nclass Example(Scene):\n def construct(self):\n circle = Circle()\n self.play(Create(circle))"
}
}'
3. Download the compiled video
# Replace VIDEO_ID with the file_id from the compile response
curl -X 'GET' \
'http://localhost:8000/videos/VIDEO_ID' \
--output output.mp4
4. Compile a specific scene by name
curl -X 'POST' \
'http://localhost:8000/tools/manim_compile' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"parameters": {
"code": "from manim import *\nclass Scene1(Scene):\n def construct(self):\n circle = Circle()\n self.play(Create(circle))\n\nclass Scene2(Scene):\n def construct(self):\n square = Square()\n self.play(Create(square))",
"scene_name": "Scene1"
}
}'
5. List available tools
curl http://localhost:8000/v1/tools
6. Run the example script
python example_usage.py
Testing
See TESTING.md for detailed testing instructions.
Quick test:
# Run tool tests (no server needed)
python test_tools.py
# Run API tests (server must be running)
python test_api.py
Security
- Always use HTTPS in production
- Consider adding authentication for production deployments
- Validate and sanitize all user inputs
- Set appropriate CORS policies for your use case
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。