Markdown Frontmatter MCP
Enables querying Markdown files in knowledge bases (like Obsidian vaults) by front matter metadata, filtering notes by tags, recency, and folders to surface relevant content based on created/updated dates.
README
markdown-frontmatter-mcp
A Model Context Protocol (MCP) server that queries Markdown files by front matter metadata. Designed for Obsidian vaults and other Markdown-based knowledge bases.
The Problem
You have a Markdown knowledge base (Obsidian, etc.) with front matter like:
---
created: 2025-12-09
updated: 2025-12-11
tags: [ai-systems, strategy]
---
You want to ask an AI: "What have I been thinking about [X] lately?"
Existing tools can search by keywords or do semantic search, but none let you query by front matter metadata — filtering by tags AND recency.
The Solution
This MCP server exposes one tool: query_recent_notes
query_recent_notes(
tags: ["ai-systems"], # Filter by these tags (matches ANY)
days: 7, # How far back to look
folders: ["thoughts"], # Which folders to search
limit: 10 # Max results
)
Returns:
- File path
- Title (from H1 or filename)
- Tags
- Created/updated dates
- Excerpt (first ~200 chars)
Installation
From PyPI (coming soon)
pip install markdown-frontmatter-mcp
From Source
git clone https://github.com/caffeinatedwes/markdown-frontmatter-mcp
cd markdown-frontmatter-mcp
pip install -e .
Configuration
Environment Variable
Set KB_PATH to point to your knowledge base:
export KB_PATH=/path/to/your/obsidian/vault
MCP Client Configuration
TypingMind
Add to your MCP config:
{
"mcpServers": {
"markdown-kb": {
"command": "python3",
"args": ["/path/to/markdown-frontmatter-mcp/src/server.py"],
"env": {
"KB_PATH": "/path/to/your/obsidian/vault"
}
}
}
}
Claude Desktop
Add to ~/.config/Claude/claude_desktop_config.json:
{
"mcpServers": {
"markdown-kb": {
"command": "python3",
"args": ["/path/to/markdown-frontmatter-mcp/src/server.py"],
"env": {
"KB_PATH": "/path/to/your/obsidian/vault"
}
}
}
}
Usage Examples
Once configured, you can ask the AI:
"Get my recent thinking on AI systems"
The AI will call:
query_recent_notes(tags=["ai-systems"], days=7)
"What personal growth stuff have I been working on?"
query_recent_notes(tags=["personal-growth", "therapy"], days=14)
"Catch me up on what's been on my mind"
query_recent_notes(days=3, limit=5)
Front Matter Requirements
For files to be queryable, they need YAML front matter with:
createdordate: When the note was created (YYYY-MM-DD)updated(optional): When last meaningfully edited (YYYY-MM-DD)tags(optional): List of tags for filtering
Example:
---
created: 2025-12-09
updated: 2025-12-11
tags:
- ai-systems
- knowledge-management
---
# My Note Title
Content here...
How It Works
- Walks the specified folders in your knowledge base
- Parses YAML front matter from each
.mdfile - Filters by:
- Date:
createdorupdatedwithin thedayswindow - Tags: matches ANY of the specified tags
- Date:
- Returns results sorted by most recently touched
Skipped Directories
The server automatically skips:
.obsidian.git.smart-env.versiondbnode_modules- Any directory starting with
.
Development
Testing Locally
# Set your KB path
export KB_PATH=~/your-obsidian-vault
# Run the server directly (for testing)
python3 src/server.py
Then send JSON-RPC messages via stdin:
{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}
{"jsonrpc":"2.0","id":2,"method":"tools/list","params":{}}
{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"query_recent_notes","arguments":{"tags":["ai-systems"],"days":7}}}
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。