Markdown Frontmatter MCP

Markdown Frontmatter MCP

Enables querying Markdown files in knowledge bases (like Obsidian vaults) by front matter metadata, filtering notes by tags, recency, and folders to surface relevant content based on created/updated dates.

Category
访问服务器

README

markdown-frontmatter-mcp

A Model Context Protocol (MCP) server that queries Markdown files by front matter metadata. Designed for Obsidian vaults and other Markdown-based knowledge bases.

The Problem

You have a Markdown knowledge base (Obsidian, etc.) with front matter like:

---
created: 2025-12-09
updated: 2025-12-11
tags: [ai-systems, strategy]
---

You want to ask an AI: "What have I been thinking about [X] lately?"

Existing tools can search by keywords or do semantic search, but none let you query by front matter metadata — filtering by tags AND recency.

The Solution

This MCP server exposes one tool: query_recent_notes

query_recent_notes(
  tags: ["ai-systems"],     # Filter by these tags (matches ANY)
  days: 7,                  # How far back to look
  folders: ["thoughts"],    # Which folders to search
  limit: 10                 # Max results
)

Returns:

  • File path
  • Title (from H1 or filename)
  • Tags
  • Created/updated dates
  • Excerpt (first ~200 chars)

Installation

From PyPI (coming soon)

pip install markdown-frontmatter-mcp

From Source

git clone https://github.com/caffeinatedwes/markdown-frontmatter-mcp
cd markdown-frontmatter-mcp
pip install -e .

Configuration

Environment Variable

Set KB_PATH to point to your knowledge base:

export KB_PATH=/path/to/your/obsidian/vault

MCP Client Configuration

TypingMind

Add to your MCP config:

{
  "mcpServers": {
    "markdown-kb": {
      "command": "python3",
      "args": ["/path/to/markdown-frontmatter-mcp/src/server.py"],
      "env": {
        "KB_PATH": "/path/to/your/obsidian/vault"
      }
    }
  }
}

Claude Desktop

Add to ~/.config/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "markdown-kb": {
      "command": "python3",
      "args": ["/path/to/markdown-frontmatter-mcp/src/server.py"],
      "env": {
        "KB_PATH": "/path/to/your/obsidian/vault"
      }
    }
  }
}

Usage Examples

Once configured, you can ask the AI:

"Get my recent thinking on AI systems"

The AI will call:

query_recent_notes(tags=["ai-systems"], days=7)

"What personal growth stuff have I been working on?"

query_recent_notes(tags=["personal-growth", "therapy"], days=14)

"Catch me up on what's been on my mind"

query_recent_notes(days=3, limit=5)

Front Matter Requirements

For files to be queryable, they need YAML front matter with:

  • created or date: When the note was created (YYYY-MM-DD)
  • updated (optional): When last meaningfully edited (YYYY-MM-DD)
  • tags (optional): List of tags for filtering

Example:

---
created: 2025-12-09
updated: 2025-12-11
tags:
  - ai-systems
  - knowledge-management
---

# My Note Title

Content here...

How It Works

  1. Walks the specified folders in your knowledge base
  2. Parses YAML front matter from each .md file
  3. Filters by:
    • Date: created or updated within the days window
    • Tags: matches ANY of the specified tags
  4. Returns results sorted by most recently touched

Skipped Directories

The server automatically skips:

  • .obsidian
  • .git
  • .smart-env
  • .versiondb
  • node_modules
  • Any directory starting with .

Development

Testing Locally

# Set your KB path
export KB_PATH=~/your-obsidian-vault

# Run the server directly (for testing)
python3 src/server.py

Then send JSON-RPC messages via stdin:

{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}
{"jsonrpc":"2.0","id":2,"method":"tools/list","params":{}}
{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"query_recent_notes","arguments":{"tags":["ai-systems"],"days":7}}}

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选