Markmap MCP Server

Markmap MCP Server

Enables conversion of plain text descriptions and Markdown content into interactive mind maps using AI. Automatically uploads generated mind maps to Aliyun OSS and provides online access links.

Category
访问服务器

README

Markmap MCP Server

Sample Mindmap

NPM Version GitHub License 中文文档 Stars

Markmap MCP Server is based on the Model Context Protocol (MCP) that allows one-click conversion of Markdown text to interactive mind maps, built on the open source project markmap. The generated mind maps support rich interactive operations and can be exported in various image formats.

🎉 Explore More Mind Mapping Tools

Try MarkXMind - An online editor that creates complex mind maps using simple XMindMark syntax. It supports real-time preview, multi-format export (.xmind/.svg/.png), importing existing XMind files. Try it now!

Features

  • 🤖 AI-Powered Generation: Generate mind maps from plain text using Alibaba Cloud Qwen AI (NEW in v0.2.0)
  • 🌠 Markdown to Mind Map: Convert Markdown text to interactive mind maps
  • 🔗 URL Download Support: Download Markdown files directly from URLs for conversion
  • ☁️ Aliyun OSS Integration: Automatically upload generated mind maps to Aliyun Object Storage and get online access links
  • 🖼️ Multi-format Export: Support for exporting as PNG, JPG, SVG images, and XMind-compatible format
  • 🔄 Interactive Operations: Support for zooming, expanding/collapsing nodes, and other interactive features
  • 📋 Markdown Copy: One-click copy of the original Markdown content
  • 🧹 Auto Cleanup: Automatically delete local temporary files after OSS upload

Prerequisites

  1. Node.js (v20 or above)

Installation

Manual Installation

# Install from npm
npm install @jiushan93/markmap-mcp-server -g

# Basic run
npx -y @jiushan93/markmap-mcp-server

# Specify output directory
npx -y @jiushan93/markmap-mcp-server --output /path/to/output/directory

Alternatively, you can clone the repository and run locally:

# Clone the repository
git clone https://github.com/jiushan-test/markmap-mcp.git

# Navigate to the project directory
cd markmap-mcp

# Build project
npm install && npm run build

# Run the server
node build/index.js

Usage

Configuration (AI and OSS Required)

⚠️ Important: This tool requires API keys from environment variables to work.

The following configurations are pre-configured in the code:

  • OSS Bucket: aiagenttest
  • OSS Region: oss-cn-beijing
  • OSS Endpoint: oss-cn-beijing.aliyuncs.com
  • Qwen Model: qwen3-235b-a22b-thinking-2507
  • API URL: https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions

You only need to provide the API keys:

{
  "mcpServers": {
    "markmap": {
      "type": "stdio",
      "command": "npx",
      "args": ["-y", "@jiushan93/markmap-mcp-server"],
      "env": {
        "DASHSCOPE_API_KEY": "sk-your-dashscope-api-key",
        "OSS_ACCESS_KEY_ID": "your-oss-access-key-id",
        "OSS_ACCESS_KEY_SECRET": "your-oss-access-key-secret"
      }
    }
  }
}

[!IMPORTANT]

Environment Variables

Required API Keys (Must be configured):

  • DASHSCOPE_API_KEY or QWEN_API_KEY: Your Alibaba Cloud DashScope API key (Required)
    • Get from: https://dashscope.console.aliyun.com/
  • OSS_ACCESS_KEY_ID: Aliyun OSS Access Key ID (Required)
  • OSS_ACCESS_KEY_SECRET: Aliyun OSS Access Key Secret (Required)

Pre-configured Settings (Hard-coded in the application):

  • Model: qwen3-235b-a22b-thinking-2507
  • API URL: https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
  • OSS Bucket: aiagenttest
  • OSS Region: oss-cn-beijing
  • OSS Endpoint: oss-cn-beijing.aliyuncs.com

Optional Configuration:

  • MARKMAP_DIR: Specify the output directory for temporary files (defaults to system temp directory)

⚠️ Important Notes:

  • Only API keys need to be configured via environment variables
  • All other settings (bucket, region, model) are pre-configured
  • Mind maps are stored in OSS and return signed URLs (5-year validity)
  • Temporary local files are automatically deleted after OSS upload

Available Tool

text-to-mindmap

Convert plain text descriptions into interactive mind maps using AI.

The text will be processed by Qwen AI model to generate structured Markdown, then converted to a mind map and automatically uploaded to OSS.

Parameters:

  • text: Text description to convert into a mind map (required string)

Example:

{
  "text": "Python programming basics"
}

Return Value:

On success, returns only the URL:

https://aiagenttest.oss-cn-beijing.aliyuncs.com/markmap/Python-programming-basics-1234567890.html?...

On failure, returns error details:

{
  "success": false,
  "error": "OSS upload failed",
  "message": "思维导图已生成,但OSS上传失败",
  "localPath": "/path/to/local/file.html"
}

Requirements:

  • ✅ Qwen API configuration (required)
  • ✅ OSS configuration (required)

Available Export Formats:

The generated mind map HTML includes buttons (in Chinese) to export in multiple formats:

  • 📸 导出 PNG: Export as PNG image
  • 📸 导出 JPG: Export as JPG image
  • 📸 导出 SVG: Export as SVG vector image
  • 🧠 导出 .mm 文件: Export as FreeMind format (.mm file) - Can be opened in XMind, FreeMind, Freeplane
  • 📋 复制 Markdown: Copy the original Markdown content

License

This project is licensed under the MIT License.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选