Materials MCP
A Model Context Protocol server that provides access to materials databases through the OPTIMADE API, with focus on Google DeepMind's GNoME dataset containing millions of predicted crystal structures.
README
Materials MCP Project
A Model Context Protocol (MCP) server designed to interact with materials databases through the OPTIMADE API, with a specific focus on Google DeepMind's GNoME (Graph Networks for Materials Exploration) dataset. This project serves as a bridge between the OPTIMADE API and materials science applications, enabling efficient access and manipulation of crystal structure data.
Overview
The Materials MCP Project implements a Model Context Protocol server that:
- Interfaces with the OPTIMADE API to access materials databases
- Provides specialized access to the GNoME dataset, which contains millions of predicted stable crystal structures
- Enables efficient querying and retrieval of crystal structures and their properties
- Supports standardized data exchange formats for materials science applications
Features
- OPTIMADE API integration for standardized materials database access
- GNoME dataset integration for accessing predicted stable crystal structures
- RESTful API endpoints for crystal structure queries
- Support for common materials science data formats
- Efficient data caching and retrieval mechanisms
- Standardized query language support
Setup
- Ensure you have Python 3.10 or higher installed
- Create a virtual environment:
python -m venv venv source venv/bin/activate # On Unix/macOS - Install dependencies using Poetry:
pip install poetry poetry install
Project Structure
materials_mcp/- Main package directoryapi/- OPTIMADE API integrationgnome/- GNoME dataset specific functionalitymodels/- Data models and schemasserver/- MCP server implementation
tests/- Test directorypyproject.toml- Project configuration and dependenciesREADME.md- This file
Dependencies
- Python >=3.10
- optimade >=1.2.4 - For OPTIMADE API integration
- Additional dependencies will be added as needed for:
- FastAPI/Flask for the web server
- Database integration
- Data processing and analysis
- Testing and documentation
Usage
[Usage examples will be added as the project develops]
Contributing
[Contribution guidelines will be added]
License
[License information will be added]
Acknowledgments
- Google DeepMind for the GNoME dataset
- OPTIMADE consortium for the API specification
- [Other acknowledgments to be added]
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。