Math MCP Server
Enables basic arithmetic operations (addition, subtraction, multiplication, division) with 64-bit precision and matrix multiplication capabilities. Provides mathematical computation tools for AI assistants through the Model Context Protocol.
README
Math MCP Server
Overview
This is an MCP (Model Context Protocol) server that can do basic arithmetic in 64 bit precision, along with matrix multiplication.
Features
-
Addition
-
Subtraction
-
Multiplication
-
Division
-
Matrix multiplication
Installation
Prerequisities
Ensure you have the following installed:
- Python 3.13+
- uv
Installing UV
See installation guide for all options.
Unix/MacOS
curl -LsSf https://astral.sh/uv/install.sh | sh
or
brew install uv
Windows
winget install --id=astral-sh.uv -e
Clone the Repository
git clone https://github.com/avanishd-3/math-mcp.git
cd math-mcp-server
uv sync
Integration with Clients
Claude Code
fastmcp install claude-code src/math_server.py:math_mcp
Claude Desktop
fastmcp install claude-desktop src/math_server.py:math_mcp
Cursor
fastmcp install cursor src/math_server.py:math_mcp
VS Code
Add the following .vscode/mcp.json and use your actual path.
{
"servers": {
"Math MCP Server": {
"command": "uv",
"args": [
"run",
"--with",
"fastmcp",
"--with",
"numpy",
"fastmcp",
"run",
"/absolute/path/Desktop/to/math-mcp-server/src/math_server.py:math_mcp"
]
}
},
}
Contributing
-
Fork the repository
-
Create a new branch:
git checkout -b add-feature
- Make changes and commit (remember to add unit tests in test/ directory)
git commit -m "Added a new feature"
-
Push to your fork git push origin add-feature
-
Open a pull request.
Project Structure
/
├── src
│ └── math_server.py
├── tests
│ ├── test_arithmetic.py
│ │ └── astro.svg
│ ├── test_linear_algebra.py
├── pytest.ini
├── pyproject.toml
└── uv.lock
Architecture
This MCP server uses Fast MCP 2.0, which provides many more features than Fast MCP 1.0, which is what the official Python SDK for MCP uses.
Also, the unit tests are written with Pytest, which is what Fast MCP 2.0 recommends.
Lastly, if you don't know, uv is a much faster version of pip that also provides a lockfile for project dependencies (this will be familiar if you've used npm or cargo before). The MCP Python SDK itself uses uv, and I use it for all new Python projects, because it's 10-100x faster than pip, and the lockfile makes dependency version management much simpler.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。