Math-Physics-ML MCP System

Math-Physics-ML MCP System

Provides GPU-accelerated scientific computing capabilities including symbolic mathematics, quantum wave mechanics simulations, molecular dynamics, and neural network training through four specialized MCP servers.

Category
访问服务器

README

Math-Physics-ML MCP System

PyPI - Math MCP PyPI - Quantum MCP PyPI - Molecular MCP PyPI - Neural MCP Documentation License: MIT

GPU-accelerated Model Context Protocol servers for computational mathematics, physics simulations, and machine learning.

Overview

This system provides 4 specialized MCP servers that bring scientific computing capabilities to AI assistants like Claude:

Server Description Tools
Math MCP Symbolic algebra (SymPy) + numerical computing 14
Quantum MCP Wave mechanics & Schrodinger simulations 12
Molecular MCP Classical molecular dynamics 15
Neural MCP Neural network training & evaluation 16

Key Features:

  • GPU acceleration with automatic CUDA detection (10-100x speedup)
  • Async task support for long-running simulations
  • Cross-MCP workflows via URI-based data sharing
  • Progressive discovery for efficient tool exploration

Quick Start

Installation with uvx (Recommended)

Run any MCP server directly without installation:

# Run individual servers
uvx scicomp-math-mcp
uvx scicomp-quantum-mcp
uvx scicomp-molecular-mcp
uvx scicomp-neural-mcp

Installation with pip/uv

# Install individual servers
pip install scicomp-math-mcp
pip install scicomp-quantum-mcp
pip install scicomp-molecular-mcp
pip install scicomp-neural-mcp

# Or install all at once
pip install scicomp-math-mcp scicomp-quantum-mcp scicomp-molecular-mcp scicomp-neural-mcp

# With GPU support (requires CUDA)
pip install scicomp-math-mcp[gpu] scicomp-quantum-mcp[gpu] scicomp-molecular-mcp[gpu] scicomp-neural-mcp[gpu]

Configuration

Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "math-mcp": {
      "command": "uvx",
      "args": ["scicomp-math-mcp"]
    },
    "quantum-mcp": {
      "command": "uvx",
      "args": ["scicomp-quantum-mcp"]
    },
    "molecular-mcp": {
      "command": "uvx",
      "args": ["scicomp-molecular-mcp"]
    },
    "neural-mcp": {
      "command": "uvx",
      "args": ["scicomp-neural-mcp"]
    }
  }
}

Claude Code

Add to your project's .mcp.json:

{
  "mcpServers": {
    "math-mcp": {
      "command": "uvx",
      "args": ["scicomp-math-mcp"]
    },
    "quantum-mcp": {
      "command": "uvx",
      "args": ["scicomp-quantum-mcp"]
    }
  }
}

Or configure globally in ~/.claude/settings.json.

Usage Examples

Math MCP

# Solve equations symbolically
symbolic_solve(equations="x**3 - 6*x**2 + 11*x - 6")
# Result: [1, 2, 3]

# Compute derivatives
symbolic_diff(expression="sin(x)*exp(-x**2)", variable="x")
# Result: cos(x)*exp(-x**2) - 2*x*sin(x)*exp(-x**2)

# GPU-accelerated matrix operations
result = matrix_multiply(a=matrix_a, b=matrix_b, use_gpu=True)

Quantum MCP

# Create a Gaussian wave packet
psi = create_gaussian_wavepacket(
    grid_size=[256],
    position=[64],
    momentum=[2.0],
    width=5.0
)

# Solve time-dependent Schrodinger equation
simulation = solve_schrodinger(
    potential=barrier_potential,
    initial_state=psi,
    time_steps=1000,
    dt=0.1,
    use_gpu=True
)

Molecular MCP

# Create particle system
system = create_particles(
    n_particles=1000,
    box_size=[20, 20, 20],
    temperature=1.5
)

# Add Lennard-Jones potential
add_potential(system_id=system, potential_type="lennard_jones")

# Run MD simulation
trajectory = run_nvt(system_id=system, n_steps=100000, temperature=1.0)

# Analyze diffusion
msd = compute_msd(trajectory_id=trajectory)

Neural MCP

# Define model
model = define_model(architecture="resnet18", num_classes=10, pretrained=True)

# Load dataset
dataset = load_dataset(dataset_name="CIFAR10", split="train")

# Train
experiment = train_model(
    model_id=model,
    dataset_id=dataset,
    epochs=50,
    batch_size=128,
    use_gpu=True
)

# Export for deployment
export_model(model_id=model, format="onnx", output_path="model.onnx")

Documentation

Full documentation is available at andylbrummer.github.io/math-mcp

Development

# Clone the repository
git clone https://github.com/andylbrummer/math-mcp.git
cd math-mcp

# Install dependencies
uv sync --all-extras

# Run tests
uv run pytest -m "not gpu"  # CPU only
uv run pytest               # All tests (requires CUDA)

# Run with coverage
uv run pytest --cov=shared --cov=servers

See CONTRIBUTING.md for development guidelines.

Performance

GPU acceleration provides significant speedups for compute-intensive operations:

MCP Operation CPU GPU Speedup
Math Matrix multiply (4096x4096) 2.1s 35ms 60x
Quantum 2D Schrodinger (512x512, 1000 steps) 2h 2min 60x
Molecular MD (100k particles, 10k steps) 1h 30s 120x
Neural ResNet18 training (1 epoch) 45min 30s 90x

Architecture

For technical details about the system architecture, see ARCHITECTURE.md.

License

MIT License - see LICENSE for details.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选