Math-Physics-ML MCP System
Provides GPU-accelerated scientific computing capabilities including symbolic mathematics, quantum wave mechanics simulations, molecular dynamics, and neural network training through four specialized MCP servers.
README
Math-Physics-ML MCP System
GPU-accelerated Model Context Protocol servers for computational mathematics, physics simulations, and machine learning.
Overview
This system provides 4 specialized MCP servers that bring scientific computing capabilities to AI assistants like Claude:
| Server | Description | Tools |
|---|---|---|
| Math MCP | Symbolic algebra (SymPy) + numerical computing | 14 |
| Quantum MCP | Wave mechanics & Schrodinger simulations | 12 |
| Molecular MCP | Classical molecular dynamics | 15 |
| Neural MCP | Neural network training & evaluation | 16 |
Key Features:
- GPU acceleration with automatic CUDA detection (10-100x speedup)
- Async task support for long-running simulations
- Cross-MCP workflows via URI-based data sharing
- Progressive discovery for efficient tool exploration
Quick Start
Installation with uvx (Recommended)
Run any MCP server directly without installation:
# Run individual servers
uvx scicomp-math-mcp
uvx scicomp-quantum-mcp
uvx scicomp-molecular-mcp
uvx scicomp-neural-mcp
Installation with pip/uv
# Install individual servers
pip install scicomp-math-mcp
pip install scicomp-quantum-mcp
pip install scicomp-molecular-mcp
pip install scicomp-neural-mcp
# Or install all at once
pip install scicomp-math-mcp scicomp-quantum-mcp scicomp-molecular-mcp scicomp-neural-mcp
# With GPU support (requires CUDA)
pip install scicomp-math-mcp[gpu] scicomp-quantum-mcp[gpu] scicomp-molecular-mcp[gpu] scicomp-neural-mcp[gpu]
Configuration
Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"math-mcp": {
"command": "uvx",
"args": ["scicomp-math-mcp"]
},
"quantum-mcp": {
"command": "uvx",
"args": ["scicomp-quantum-mcp"]
},
"molecular-mcp": {
"command": "uvx",
"args": ["scicomp-molecular-mcp"]
},
"neural-mcp": {
"command": "uvx",
"args": ["scicomp-neural-mcp"]
}
}
}
Claude Code
Add to your project's .mcp.json:
{
"mcpServers": {
"math-mcp": {
"command": "uvx",
"args": ["scicomp-math-mcp"]
},
"quantum-mcp": {
"command": "uvx",
"args": ["scicomp-quantum-mcp"]
}
}
}
Or configure globally in ~/.claude/settings.json.
Usage Examples
Math MCP
# Solve equations symbolically
symbolic_solve(equations="x**3 - 6*x**2 + 11*x - 6")
# Result: [1, 2, 3]
# Compute derivatives
symbolic_diff(expression="sin(x)*exp(-x**2)", variable="x")
# Result: cos(x)*exp(-x**2) - 2*x*sin(x)*exp(-x**2)
# GPU-accelerated matrix operations
result = matrix_multiply(a=matrix_a, b=matrix_b, use_gpu=True)
Quantum MCP
# Create a Gaussian wave packet
psi = create_gaussian_wavepacket(
grid_size=[256],
position=[64],
momentum=[2.0],
width=5.0
)
# Solve time-dependent Schrodinger equation
simulation = solve_schrodinger(
potential=barrier_potential,
initial_state=psi,
time_steps=1000,
dt=0.1,
use_gpu=True
)
Molecular MCP
# Create particle system
system = create_particles(
n_particles=1000,
box_size=[20, 20, 20],
temperature=1.5
)
# Add Lennard-Jones potential
add_potential(system_id=system, potential_type="lennard_jones")
# Run MD simulation
trajectory = run_nvt(system_id=system, n_steps=100000, temperature=1.0)
# Analyze diffusion
msd = compute_msd(trajectory_id=trajectory)
Neural MCP
# Define model
model = define_model(architecture="resnet18", num_classes=10, pretrained=True)
# Load dataset
dataset = load_dataset(dataset_name="CIFAR10", split="train")
# Train
experiment = train_model(
model_id=model,
dataset_id=dataset,
epochs=50,
batch_size=128,
use_gpu=True
)
# Export for deployment
export_model(model_id=model, format="onnx", output_path="model.onnx")
Documentation
Full documentation is available at andylbrummer.github.io/math-mcp
- Installation Guide
- Configuration
- Quick Start Tutorial
- Architecture Overview
- GPU Acceleration
- API Reference
Development
# Clone the repository
git clone https://github.com/andylbrummer/math-mcp.git
cd math-mcp
# Install dependencies
uv sync --all-extras
# Run tests
uv run pytest -m "not gpu" # CPU only
uv run pytest # All tests (requires CUDA)
# Run with coverage
uv run pytest --cov=shared --cov=servers
See CONTRIBUTING.md for development guidelines.
Performance
GPU acceleration provides significant speedups for compute-intensive operations:
| MCP | Operation | CPU | GPU | Speedup |
|---|---|---|---|---|
| Math | Matrix multiply (4096x4096) | 2.1s | 35ms | 60x |
| Quantum | 2D Schrodinger (512x512, 1000 steps) | 2h | 2min | 60x |
| Molecular | MD (100k particles, 10k steps) | 1h | 30s | 120x |
| Neural | ResNet18 training (1 epoch) | 45min | 30s | 90x |
Architecture
For technical details about the system architecture, see ARCHITECTURE.md.
License
MIT License - see LICENSE for details.
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。