Maximo MCP Server

Maximo MCP Server

An API server that enables interaction with IBM Maximo resources like Assets and Work Orders, providing tool functions to retrieve and list asset information.

Category
访问服务器

README

Maximo MCP Server

This project implements an MCP Server for the IBM Maximo API. It provides a set of tools to interact with Maximo resources like Assets, Work Orders, etc.

High-Level Flow

  1. The MCP client sends a request to the MCP Server.
  2. The MCP Server receives the request and calls the appropriate tool function.
  3. The tool function makes a request to the Maximo API.
  4. The Maximo API returns a response to the tool function.
  5. The tool function returns the response to the MCP Server.
  6. The MCP Server returns the response to the MCP client.

Files

  • mcp_server.py: The main application file. It contains the Flask server and the tool implementations.
  • requirements.txt: The project dependencies.
  • .env: The environment variables for the project.
  • manifest.json: The tool manifest file.
  • README.md: This file.

Tools

  • get_asset: Retrieves details of a specific asset by its ID.
  • list_assets: Lists all assets, with optional filtering and pagination.

Note on HTTP Methods

The tool endpoints use the POST method to receive parameters in a JSON payload, which is a standard practice for MCP servers, even for operations that fetch data.

list_assets Parameters

  • page_size (optional, default: 10): The number of assets to return per page.
  • page_num (optional, default: 1): The page number to return.
  • where (optional): A filter to apply to the query. The value should be a valid Maximo oslc.where clause. For example, to filter for assets with a status of "OPERATING", you would use "status=\"OPERATING\"".

Running the Maximo AI Assistant

This project includes an interactive web application built with Streamlit that allows you to chat with an AI assistant powered by Gemini and your Maximo MCP server.

1. Set Up Environment

First, install the required Python packages:

pip install -r requirements.txt

You will also need to create a .env file in the root of the project with your Maximo and Google API keys:

MAXIMO_API_URL=https://your-maximo-instance.com
MAXIMO_API_KEY=your-maximo-api-key
GOOGLE_API_KEY=your-google-api-key

2. Run the MCP Server

In your first terminal, start the MCP server:

python mcp_server.py

The server will start on http://localhost:5001. Keep this terminal running.

3. Run the Streamlit App

In a new terminal window, run the Streamlit application:

streamlit run streamlit_app.py

The application will open in your web browser. You can now chat with the Maximo AI Assistant and ask it questions about your assets.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选