MCP + CrewAI Agentic Integration

MCP + CrewAI Agentic Integration

A FastMCP server providing real-time weather, news retrieval, and local note management tools for autonomous CrewAI agents. It enables context-aware multi-agent workflows with observability and high-speed inference integration.

Category
访问服务器

README

🤖 MCP + CrewAI Agentic Integration 🚀

A powerful demonstration of Model Context Protocol (MCP) integrated with CrewAI orchestrations, featuring full observability through AgentOps and high-speed inference via Groq.

Python CrewAI FastMCP AgentOps


🌟 Overview

This project bridges the gap between context-aware tools and autonomous agents. It provides a custom MCP server for real-time external data (Weather, News, Notes) while leveraging CrewAI to orchestrate multi-agent workflows.

🏗️ Architecture

  • MCP Layer: A FastMCP server exposing tools for real-time data retrieval.
  • Agentic Layer: CrewAI agents specialized in Market Analysis and Research.
  • Inference Layer: Ultra-fast LLMs (Llama 3.1) hosted on Groq.
  • Observability Layer: AgentOps for tracing, cost management, and debugging.

✨ Key Features

🛠️ Custom MCP Server Tools

  • ☀️ Weather Engine: Real-time meteorology data via WeatherAPI.
  • 📰 News Intelligence: Global news retrieval via Serper (Google Search API).
  • 📝 Contextual Notes: Locally persistent note management for long-term memory.
  • � Auto-Summary: Intelligent summarization of collected context.

👥 Intelligence Crew

  • 🔍 Market Researcher: Scours data to identify emerging trends.
  • 📈 Data Analyst: Synthesizes research into actionable market insights.
  • 🚀 Sequential Workflow: Fully orchestrated execution path for reliable results.

🛠️ Tech Stack


🚀 Getting Started

1. Prerequisites

Ensure you have the following installed:

  • uv (Recommended) or Python 3.13+
  • A valid Groq API Key
  • A valid AgentOps API Key
  • A Serper API Key (for News)

2. Installation

Clone the repository and sync dependencies:

git clone https://github.com/vad-007/MCP_Integration_crewai.git
cd MCP_Integration_crewai
uv sync

3. Configuration

Create a .env file in the root directory:

AGENTOPS_API_KEY=your_agentops_key
GROQ_API_KEY=your_groq_key
SERPER_API_KEY=your_serper_key
WEATHER_API_KEY=your_weather_key

4. Running the Project

🌐 Start the MCP Server

mcp dev main.py

🚢 Run the CrewAI Integration

python crewai_agentops_integration.py

🔍 Run Diagnostics

python test_agentops.py

📊 Observability with AgentOps

This project is fully instrumented. Every run generates a unique replay URL allowed you to:

  • Watch Agent Self-Correction: See exactly how agents reason through tasks.
  • Trace LLM Calls: Monitor every prompt and completion.
  • Analyze Latency: Visualize the execution timeline of your crew.

Check your dashboard at: app.agentops.ai


📂 Project Structure

├── main.py                    # FastMCP Server implementation
├── crewai_agentops_integration.py # Main CrewAI orchestration
├── test_agentops.py           # Connectivity & Diagnostic tool
├── .env                       # Environment variables (private)
├── pyproject.toml             # Project configuration
├── uv.lock                    # Dependency lockfile
└── docs/                      # Troubleshooting & Optimization guides

🤝 Contributing

Contributions are what make the open-source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

🛡️ License

Distributed under the MIT License. See LICENSE for more information.


Developed with ❤️ for the AI Community.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选