
mcp-agent-forge
mcp-agent-forge
README
Agent Forge - 智能体锻造工具 (AI Agent Forge Tool)
<a name="chinese"></a>
中文版
Agent Forge 是一个智能体创建和管理平台,能够创建和管理具有特定性格特征的智能体,并模拟它们对问题的回答。通过Agent Forge MCP,你可以快速构建起一个类似于CO-STORM的多智能体协作研究项目。
功能特点
- 智能体锻造:创建具有特定性格特征的智能体
- 思维模拟:模拟智能体回答问题
- 完整管理:支持智能体的查询、列表、删除等操作
- 多轮对话:支持深度的多轮对话交互
- 自然语言处理:基于 DeepSeek API 的高级语言理解能力
系统要求
- Go 1.24.1 或更高版本
- DeepSeek API 密钥
安装
git clone https://github.com/HundunOnline/mcp-agent-forge.git
cd mcp-agent-forge && make build
MCP 配置
{
"mcpServers": {
"mcp-agent-forge": {
"command": "/path/to/mcp-agent-forge",
"env": {
"DEEPSEEK_API_KEY": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx",
}
}
}
}
配置说明
Configuration
Environment Variables
变量名 | 描述 | 默认值 | 是否必需 |
---|---|---|---|
DEEPSEEK_API_KEY |
DeepSeek API 密钥 | - | 是 |
LOG_LEVEL |
日志级别 (debug, info, warn, error) | info | 否 |
LOG_PATH |
日志文件路径 | ./logs | 否 |
CONFIG_PATH |
配置文件路径 | ./config/config.yaml | 否 |
PORT |
服务端口号 | 8080 | 否 |
DEBUG |
调试模式开关 | false | 否 |
使用方法
expert_personality_generation
: 创建新的智能体agent_answer
: 模拟智能体回答问题get_agent
: 获取智能体信息list_agents
: 列出所有智能体delete_agent
: 删除智能体
示例
基本用法
// 创建智能体
{
"name": "expert_personality_generation",
"arguments": {
"agent_name": "马斯克思维模型",
"core_traits": "系统思维,第一性原理,工程思维,风险管理,创新思维"
}
}
// 智能体回答
{
"name": "agent_answer",
"arguments": {
"agent_id": "your_agent_id",
"context": "如何看待特斯拉的发展策略?",
"planned_rounds": 3,
"current_round": 1,
"need_more_rounds": false
}
}
实际应用案例
我们在 Claude AI 中创建了一个示例应用,展示了如何使用 Agent Forge 创建和管理专家智能体:
这个示例展示了:
- 如何创建具有特定专业背景的智能体
- 如何进行多轮对话交互
- 如何利用智能体的专业知识解决问题
- 如何管理和调整智能体的行为
贡献指南
欢迎提交 Pull Request 或创建 Issue 来帮助改进这个项目。我们特别欢迎以下方面的贡献:
- 新的智能体模型和特征
- 性能优化
- 文档改进
- Bug 修复
- 新功能建议
许可证
本项目采用 MIT 许可证。详见 LICENSE 文件。
<a name="english"></a>
English Version
Agent Forge is a platform for creating and managing AI agents with specific personality traits and simulating their responses to questions. Through agent forge mcp, you can quickly build a multi-agent collaboration research project similar to CO-STORM.
Features
- Agent Forging: Create agents with specific personality traits
- Thought Simulation: Simulate agent responses to questions
- Complete Management: Support for agent querying, listing, deletion, and other operations
- Multi-round Dialogue: Support for deep multi-round conversation interactions
- Natural Language Processing: Advanced language understanding capabilities based on DeepSeek API
System Requirements
- Go 1.24.1 or higher
- DeepSeek API key
Installation
git clone https://github.com/HundunOnline/mcp-agent-forge.git
cd agent-forge && make build
MCP Configuration
{
"mcpServers": {
"mcp-agent-forge": {
"command": "/path/to/mcp-agent-forge",
"env": {
"DEEPSEEK_API_KEY": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx",
}
}
}
}
Configuration Guide
Configuration
Environment Variables
Variable Name | Description | Default Value | Required |
---|---|---|---|
DEEPSEEK_API_KEY |
DeepSeek API Key | - | Yes |
LOG_LEVEL |
Logging level (debug, info, warn, error) | info | No |
LOG_PATH |
Log file path | ./logs | No |
CONFIG_PATH |
Configuration file path | ./config/config.yaml | No |
PORT |
Service port | 8080 | No |
DEBUG |
Debug mode switch | false | No |
Usage
expert_personality_generation
: Create a new agentagent_answer
: Simulate agent responsesget_agent
: Get agent informationlist_agents
: List all agentsdelete_agent
: Delete an agent
Examples
Basic Usage
// Create an agent
{
"name": "expert_personality_generation",
"arguments": {
"agent_name": "Elon Musk Thinking Model",
"core_traits": "Systems Thinking,First Principles,Engineering Mindset,Risk Management,Innovation"
}
}
// Agent response
{
"name": "agent_answer",
"arguments": {
"agent_id": "your_agent_id",
"context": "What's your view on Tesla's development strategy?",
"planned_rounds": 3,
"current_round": 1,
"need_more_rounds": false
}
}
Real Application Case
We created a sample application in Claude AI that demonstrates how to use Agent Forge to create and manage expert agents:
This example shows:
- How to create agents with specific professional backgrounds
- How to conduct multi-round dialogue interactions
- How to utilize agents' expertise to solve problems
- How to manage and adjust agent behavior
Contributing
We welcome Pull Requests or Issues to help improve this project. We especially welcome contributions in the following areas:
- New agent models and traits
- Performance optimizations
- Documentation improvements
- Bug fixes
- New feature suggestions
License
This project is licensed under the MIT License. See the LICENSE file for details.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。