MCP Agent Tracker
Automatically tracks and logs all client-agent conversations in real-time without user intervention. Provides conversation history, analytics, weather tools, and continuous system health monitoring with complete request-response pair recording.
README
MCP Agent Tracker
A Model Context Protocol (MCP) server that automatically tracks client-agent conversations without requiring any user interaction.
Features
🗣️ Automatic Conversation Tracking
- Zero User Interaction Required: All conversations are tracked automatically
- Client Request Logging: Every client prompt/request is logged
- Agent Response Logging: Every agent response is captured
- Complete Conversation Turns: Full request-response pairs are recorded
- Session Management: Automatic session creation and tracking
🔧 MCP Tools Available
get_current_weather(city): Get weather information for a cityagent_interaction(prompt): Interact with the agentget_interaction_history(limit, session_id): Retrieve conversation historyget_conversation_summary(session_id): Get conversation statistics and patterns
📊 Automatic Monitoring
- Background Health Checks: Continuous system monitoring every 5 minutes
- Automatic Metadata Collection: System info, process details, uptime
- Error Tracking: Comprehensive error logging and recovery
- Performance Metrics: Execution times and system health
How It Works
1. Automatic Session Creation
# Sessions are created automatically when the server starts
# No user input required
logger.get_or_create_session()
2. Client Request Tracking
# Every client request is automatically logged
logger.log_client_request(f"Get weather for {city}")
3. Agent Response Tracking
# Every agent response is automatically captured
logger.log_agent_response(response)
4. Complete Conversation Logging
# Full conversation turns are recorded
logger.log_conversation_turn(
client_request=f"Get weather for {city}",
agent_response=response
)
5. Background Monitoring
# System health is monitored continuously
# No user interaction needed
def background_monitoring():
while True:
logger.log_interaction(interaction_type='health_check', ...)
time.sleep(Config.MONITORING_INTERVAL_SECONDS)
Configuration
Environment Variables
# Enable/disable features
ENABLE_BACKGROUND_MONITORING=true
MONITORING_INTERVAL_SECONDS=300
ENABLE_AUTOMATIC_METADATA=true
# Database and logging
DATABASE_URL=
DB_PATH=./data/agent_tracker.db
LOG_LEVEL=INFO
Configuration Options
ENABLE_BACKGROUND_MONITORING: Enable continuous system monitoringMONITORING_INTERVAL_SECONDS: How often to run health checks (default: 300s)ENABLE_AUTOMATIC_METADATA: Collect system info automatically
Database Schema
AgentInteraction Table
CREATE TABLE agent_interactions (
id INTEGER PRIMARY KEY,
timestamp TIMESTAMP,
session_id VARCHAR(255),
user_id VARCHAR(255),
interaction_type VARCHAR(100), -- 'client_request', 'agent_response', 'conversation_turn'
prompt TEXT, -- Client request
response TEXT, -- Agent response
status VARCHAR(50),
error_message TEXT,
meta_data JSON -- Automatic system metadata
);
Session Table
CREATE TABLE sessions (
id VARCHAR(255) PRIMARY KEY,
user_id VARCHAR(255),
started_at TIMESTAMP,
last_activity TIMESTAMP,
total_interactions INTEGER,
meta_data JSON
);
Usage Examples
Basic Conversation Tracking
@mcp.tool()
def my_tool(prompt: str) -> str:
# Client request is automatically logged
logger.log_client_request(prompt)
# Process the request
response = process_request(prompt)
# Agent response is automatically logged
logger.log_agent_response(response)
# Complete conversation turn is recorded
logger.log_conversation_turn(prompt, response)
return response
Getting Conversation History
# Get recent conversations
history = get_interaction_history(limit=10)
# Get conversation summary
summary = get_conversation_summary()
Security Features
- Environment Variables: All configuration via environment variables
- No Hardcoded Secrets: Secure credential management
- Isolated Database Schema: Separate schema for tracking data
- Error Isolation: Logging failures don't break main functionality
Getting Started
-
Copy environment file:
cp env.example .env -
Configure your environment:
# Edit .env with your settings ENABLE_BACKGROUND_MONITORING=true MONITORING_INTERVAL_SECONDS=300 -
Run the server:
python main.py -
Monitor conversations:
# Use the MCP tools to interact and track conversations
🚀 Using in Cursor
Prerequisites
- Cursor IDE installed on your system
- Python 3.8+ with pip/uv package management
- Git for cloning the repository
Step 1: Setup MCP Server
-
Clone and navigate to your project:
cd /path/to/your/mcp/project -
Install dependencies:
# Using pip pip install -r requirements.txt # Or using uv (recommended) uv sync -
Configure environment:
cp env.example .env # Edit .env with your preferred settings
Step 2: Configure Cursor for MCP
-
Open Cursor Settings:
- Press
Cmd+,(Mac) orCtrl+,(Windows/Linux) - Or go to
Cursor → Preferences → Settings
- Press
-
Add MCP Configuration:
{ "mcpServers": { "mcp-project": { "command": "python", "args": ["/absolute/path/to/your/project/main.py"], "env": { "PYTHONPATH": "/absolute/path/to/your/project" } } } } -
Alternative: Use relative paths (if Cursor is opened in project directory):
{ "mcpServers": { "mcp-project": { "command": "python", "args": ["./main.py"] } } }
Step 3: Test MCP Integration
-
Restart Cursor after adding MCP configuration
-
Open Command Palette (
Cmd+Shift+PorCtrl+Shift+P) -
Type "MCP" to see available MCP commands
-
Test a tool:
- Use
get_current_weather("New York")to test weather functionality - Use
agent_interaction("Hello, how are you?")to test conversation tracking - Use
get_system_status()to check system health
- Use
Step 4: Use MCP Tools in Cursor
Available Tools
get_current_weather(city): Get weather for any cityagent_interaction(prompt): Interact with the agent and track conversationsget_interaction_history(limit, session_id): View conversation historyget_conversation_summary(session_id): Get conversation analyticsget_system_status(): Check system health and configurationtest_conversation_tracking(message): Test the tracking system
Example Usage in Cursor
-
Open Command Palette (
Cmd+Shift+P) -
Type MCP command:
MCP: mcp-project: get_current_weather -
Enter parameters when prompted:
city: San Francisco -
View results in the output panel
Step 5: Monitor and Debug
View Conversation History
# In Cursor terminal or via MCP tools
python -c "
from main import get_interaction_history
print(get_interaction_history(limit=5))
"
Check System Status
# Via MCP tools in Cursor
get_system_status()
Test Conversation Tracking
# Via MCP tools in Cursor
test_conversation_tracking("Test message from Cursor")
Troubleshooting
Common Issues
-
"MCP server not found":
- Check the absolute path in your Cursor settings
- Ensure the Python path is correct
- Verify the server is running
-
"Import errors":
- Check
PYTHONPATHin MCP configuration - Ensure all dependencies are installed
- Verify you're in the correct directory
- Check
-
"Permission denied":
- Make sure
main.pyis executable - Check file permissions
- Try running with
python3instead ofpython
- Make sure
Debug Commands
# Test MCP server directly
python main.py
# Check dependencies
pip list | grep mcp
# Verify configuration
python -c "from config import Config; print(Config.ENVIRONMENT)"
Advanced Configuration
Custom MCP Server Names
{
"mcpServers": {
"my-custom-mcp": {
"command": "python",
"args": ["./main.py"],
"env": {
"ENVIRONMENT": "development",
"LOG_LEVEL": "DEBUG"
}
}
}
}
Multiple MCP Servers
{
"mcpServers": {
"mcp-project": { "command": "python", "args": ["./main.py"] },
"another-mcp": { "command": "python", "args": ["./other_mcp.py"] }
}
}
Benefits in Cursor
✅ Seamless Integration: Use MCP tools directly in your IDE
✅ Real-time Monitoring: Track conversations as you work
✅ Debugging Tools: Built-in testing and monitoring functions
✅ Performance Insights: Monitor system health and usage
✅ Conversation Analytics: Analyze interaction patterns
✅ Zero Configuration: Automatic setup and tracking
Your MCP server will now be fully integrated with Cursor, providing powerful conversation tracking and monitoring capabilities right in your development environment!
What Gets Tracked Automatically
✅ Client Requests: Every prompt, question, or request
✅ Agent Responses: Every response, answer, or action
✅ Conversation Flow: Complete request-response pairs
✅ System Health: Background monitoring and metrics
✅ Error Handling: All errors and exceptions
✅ Session Data: User sessions and activity
✅ Metadata: System info, timestamps, environment
❌ Tool Usage: Internal MCP tool executions are not tracked
❌ User Input: No manual logging required
❌ Configuration: Automatic setup and management
The system is designed to be completely hands-off - once started, it will track all client-agent conversations automatically without any intervention needed.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。