MCP Apify
Enables AI assistants to interact with the Apify platform to manage actors, monitor runs, and retrieve scraped data from datasets. It supports natural language commands for executing web scrapers, managing tasks, and accessing key-value stores.
README
MCP Apify
A Model Context Protocol (MCP) server for the Apify platform. This server enables AI assistants like Claude to interact with your Apify account — managing actors, monitoring runs, retrieving datasets, and more.
Table of Contents
- Features
- Prerequisites
- Installation
- Configuration
- Usage
- Available Tools
- Examples
- Development
- License
Features
- Actors — List and inspect actors in your account
- Runs — Start, monitor, abort, and resurrect actor runs
- Tasks — Manage and execute saved actor configurations
- Datasets — Retrieve scraped data and results
- Key-Value Stores — Access stored records and outputs
- Schedules — Monitor automated execution schedules
Prerequisites
- Python 3.10 or higher
- An Apify account
- An Apify API token (get it here)
Installation
Option 1: Install from source
git clone https://github.com/fvegah/mcp-apify.git
cd mcp-apify
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
pip install -e .
Option 2: Install with uv (recommended)
git clone https://github.com/fvegah/mcp-apify.git
cd mcp-apify
uv venv
source .venv/bin/activate
uv pip install -e .
Configuration
Step 1: Set your API token
Add your Apify API token to your shell profile (~/.zshrc, ~/.bashrc, or equivalent):
export APIFY_API_TOKEN="apify_api_xxxxxxxxxxxxxxxxxxxxx"
Reload your shell configuration:
source ~/.zshrc # or source ~/.bashrc
Step 2: Configure your MCP client
Claude Desktop
Add the following to your Claude Desktop configuration file:
| OS | Path |
|---|---|
| macOS | ~/Library/Application Support/Claude/claude_desktop_config.json |
| Windows | %APPDATA%\Claude\claude_desktop_config.json |
| Linux | ~/.config/Claude/claude_desktop_config.json |
{
"mcpServers": {
"apify": {
"command": "/absolute/path/to/mcp-apify/.venv/bin/python",
"args": ["-m", "mcp_apify.server"]
}
}
}
Important: Replace
/absolute/path/to/mcp-apifywith the actual path where you cloned the repository.
Claude Code (CLI)
Add to your Claude Code MCP settings (~/.claude/settings.json):
{
"mcpServers": {
"apify": {
"command": "/absolute/path/to/mcp-apify/.venv/bin/python",
"args": ["-m", "mcp_apify.server"]
}
}
}
Step 3: Restart your MCP client
After configuration, restart Claude Desktop or Claude Code to load the new MCP server.
Usage
Once configured, you can interact with Apify through natural language. The AI assistant will use the appropriate tools automatically.
Example prompts
"List my recent actor runs"
"Show me the status of run abc123def456"
"Get the results from my last web scraper run"
"Abort the currently running actor"
"Run the apify/web-scraper actor with URL https://example.com"
"Show me all my scheduled tasks"
Available Tools
User Information
| Tool | Description |
|---|---|
get_user_info |
Get information about the authenticated user |
Actors
| Tool | Description |
|---|---|
list_actors |
List all actors (created or used by user) |
get_actor |
Get details of a specific actor |
Runs
| Tool | Description |
|---|---|
list_actor_runs |
List runs for a specific actor |
list_user_runs |
List all runs across all actors |
get_run |
Get details of a specific run |
get_last_run |
Get the most recent run of an actor |
run_actor |
Start a new actor run with optional input |
abort_run |
Stop a running actor execution |
resurrect_run |
Restart a finished run |
get_run_log |
Retrieve the log output of a run |
Tasks
| Tool | Description |
|---|---|
list_tasks |
List all saved actor tasks |
get_task |
Get task configuration details |
run_task |
Execute a task with optional input override |
list_task_runs |
List runs for a specific task |
get_task_last_run |
Get the most recent task run |
Datasets
| Tool | Description |
|---|---|
list_datasets |
List all datasets |
get_dataset |
Get dataset metadata |
get_dataset_items |
Retrieve items from a dataset |
get_run_dataset_items |
Get items from a run's default dataset |
Key-Value Stores
| Tool | Description |
|---|---|
list_key_value_stores |
List all key-value stores |
get_key_value_store |
Get store metadata |
list_keys |
List keys in a store |
get_record |
Retrieve a specific record |
get_run_output |
Get the OUTPUT record from a run |
Schedules
| Tool | Description |
|---|---|
list_schedules |
List all schedules |
get_schedule |
Get schedule configuration |
get_schedule_log |
Get schedule execution history |
Examples
List recent runs with status filter
Ask: "Show me my failed runs from the last week"
The assistant will use list_user_runs with status: "FAILED" to retrieve the information.
Run an actor with custom input
Ask: "Run the web scraper on https://news.ycombinator.com and wait for results"
The assistant will:
- Use
run_actorwith the appropriate input - Use
get_runwithwait_for_finishto monitor completion - Use
get_run_dataset_itemsto retrieve the results
Monitor a running actor
Ask: "What's the status of my current scraping job?"
The assistant will use list_user_runs with status: "RUNNING" to find active runs.
Development
Project structure
mcp-apify/
├── pyproject.toml # Package configuration
├── README.md # This file
├── .gitignore
└── src/
└── mcp_apify/
├── __init__.py
├── client.py # Apify API client
└── server.py # MCP server implementation
Running locally
# Activate virtual environment
source .venv/bin/activate
# Run the server directly (for testing)
python -m mcp_apify.server
Running tests
# Install dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
API Reference
This MCP server wraps the Apify API v2. For detailed information about request/response formats and available parameters, refer to the official documentation:
Troubleshooting
"APIFY_API_TOKEN environment variable is required"
Ensure the environment variable is set and exported in your shell profile, then restart your MCP client.
Server not appearing in Claude
- Verify the path to the Python executable is correct and absolute
- Check that the virtual environment has all dependencies installed
- Restart Claude Desktop/Code completely
API errors
Verify your API token is valid at Apify Console.
License
MIT License — see LICENSE for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。