MCP Autonomous Analyst

MCP Autonomous Analyst

A local, agentic AI pipeline that analyzes tabular data, detects anomalies, and generates interpretive summaries using local LLMs orchestrated via the Model Context Protocol.

Category
访问服务器

README

<p align="center"> <img src="https://img.shields.io/badge/Python-3.12-blue?logo=python" alt="Python Badge"/> <img src="https://img.shields.io/badge/MCP-Model_Context_Protocol-purple" alt="MCP Badge"/> <img src="https://img.shields.io/badge/Ollama-LLM-green" alt="Ollama Badge"/> <img src="https://img.shields.io/badge/ChromaDB-VectorDB-orange" alt="ChromaDB Badge"/> <img src="https://img.shields.io/badge/FastAPI-Web_UI-teal" alt="FastAPI Badge"/> <img src="https://img.shields.io/badge/Uvicorn-ASGI_Server-black" alt="Uvicorn Badge"/> </p>

Autonomous Analyst

🧠 Overview

Autonomous Analyst is a local, agentic AI pipeline that:

  • Analyzes tabular data
  • Detects anomalies with Mahalanobis distance
  • Uses a local LLM (llama3.2:1b via Ollama) to generate interpretive summaries
  • Logs results to ChromaDB for semantic recall
  • Is fully orchestrated via the Model Context Protocol (MCP)

⚙️ Features

Component Description
FastAPI Web UI Friendly dashboard for synthetic or uploaded datasets
MCP Tool Orchestration Each process step is exposed as a callable MCP tool
Anomaly Detection Mahalanobis Distance-based outlier detection
Visual Output Saved scatter plot of inliers vs. outliers
Local LLM Summarization Insights generated using llama3.2:1b via Ollama
Vector Store Logging Summaries are stored in ChromaDB for persistent memory
Agentic Planning Tool A dedicated LLM tool (autonomous_plan) determines next steps based on dataset context
Agentic Flow LLM + memory + tool use + automatic reasoning + context awareness

🧪 Tools Defined (via MCP)

Tool Name Description LLM Used
generate_data Create synthetic tabular data (Gaussian + categorical)
analyze_outliers Label rows using Mahalanobis distance
plot_results Save a plot visualizing inliers vs outliers
summarize_results Interpret and explain outlier distribution using llama3.2:1b
summarize_data_stats Describe dataset trends using llama3.2:1b
log_results_to_vector_store Store summaries to ChromaDB for future reference
search_logs Retrieve relevant past sessions using vector search (optional LLM use) ⚠️
autonomous_plan Run the full pipeline, use LLM to recommend next actions automatically

🤖 Agentic Capabilities

  • Autonomy: LLM-guided execution path selection with autonomous_plan
  • Tool Use: Dynamically invokes registered MCP tools via LLM inference
  • Reasoning: Generates technical insights from dataset conditions and outlier analysis
  • Memory: Persists and recalls knowledge using ChromaDB vector search
  • LLM: Powered by Ollama with llama3.2:1b (temperature = 0.1, deterministic)

🚀 Getting Started

1. Clone and Set Up

git clone https://github.com/MadMando/mcp-autonomous-analyst.git
cd mcp-autonomous-analyst
conda create -n mcp-agentic python=3.11 -y
conda activate mcp-agentic
pip install uv
uv pip install -r requirements.txt

2. Start the MCP Server

mcp run server.py --transport streamable-http

3. Start the Web Dashboard

uvicorn web:app --reload --port 8001

Then visit: http://localhost:8000


🌐 Dashboard Flow

  • Step 1: Upload your own dataset or click Generate Synthetic Data
  • Step 2: The system runs anomaly detection on feature_1 vs feature_2
  • Step 3: Visual plot of outliers is generated
  • Step 4: Summaries are created via LLM
  • Step 5: Results are optionally logged to vector store for recall

📁 Project Layout

📦 autonomous-analyst/
├── server.py                  # MCP server
├── web.py                     # FastAPI + MCP client (frontend logic)
├── tools/
│   ├── synthetic_data.py
│   ├── outlier_detection.py
│   ├── plotter.py
│   ├── summarizer.py
│   ├── vector_store.py
├── static/                   # Saved plot
├── data/                     # Uploaded or generated dataset
├── requirements.txt
├── .gitignore
└── README.md

📚 Tech Stack

  • MCP SDK: mcp
  • LLM Inference: Ollama running llama3.2:1b
  • UI Server: FastAPI + Uvicorn
  • Memory: ChromaDB vector database
  • Data: pandas, matplotlib, scikit-learn

✅ .gitignore Additions

__pycache__/
*.pyc
*.pkl
.env
static/
data/

🙌 Acknowledgements

This project wouldn't be possible without the incredible work of the open-source community. Special thanks to:

Tool / Library Purpose Repository
🧠 Model Context Protocol (MCP) Agentic tool orchestration & execution modelcontextprotocol/python-sdk
💬 Ollama Local LLM inference engine (llama3.2:1b) ollama/ollama
🔍 ChromaDB Vector database for logging and retrieval chroma-core/chroma
🌐 FastAPI Interactive, fast web interface tiangolo/fastapi
Uvicorn ASGI server powering the FastAPI backend encode/uvicorn

💡 If you use this project, please consider starring or contributing to the upstream tools that make it possible.

This repo was created with the assistance of a local rag-llm using llama3.2:1b

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选