MCP-AWS

MCP-AWS

A custom server with tools that enable AI agents to provision and terminate AWS EC2 instances through natural language commands.

Category
访问服务器

README

🚀 MCP-AWS: AI Agent for AWS EC2 Management

Welcome to MCP-AWS, a simple yet powerful AI-driven application that leverages OpenAI Agents and MCP servers to manage AWS EC2 instances. This app allows you to provision and terminate EC2 instances using natural language commands in your terminal. 🖥️✨


🎥 Demo Video

Watch the demo video to see MCP-AWS in action! 🚀

Watch the Demo


🌟 Features

  1. Provision EC2 Instances: Just tell the AI agent to create an EC2 instance, and it will handle the rest, providing you with the instance ID. 🛠️
  2. Terminate EC2 Instances: Provide the instance ID, and the agent will terminate the instance for you. ❌
  3. MCP Server Integration: Explore how custom MCP servers can be created and integrated with OpenAI Agents SDK. 🧩

🛠️ Tools in the MCP Server

The MCP server is a custom server with two tools:

  1. initiate_aws_ec2_instance: Creates an AWS EC2 instance.
  2. terminate_aws_ec2_instance: Terminates an AWS EC2 instance by its ID.

🚀 Getting Started

Prerequisites

  1. Python 3.12+ (for local setup) or Docker (for containerized setup)
  2. AWS IAM Role: Create an IAM role with the necessary permissions to manage EC2 instances.
  3. Environment Variables: Prepare a .env file with the following variables:
    • AWS_ACCESS_KEY_ID
    • AWS_SECRET_ACCESS_KEY
    • AWS_DEFAULT_REGION
    • OPENAI_API_KEY
    • AMI_ID
    • INSTANCE_TYPE
    • KEY_NAME
    • SECURITY_GROUP_IDS
    • AWS_REGION

🏃‍♂️ Running the App

  1. Clone the repository:
    git clone https://github.com/anirban1592/mcp-server-aws.git
    cd mcp-aws
    
  2. Create .env file as shown in prerequisites

Option 1: Docker Setup (Recommended)

  1. Build the Docker image:
    docker image build -t my-mcp .
    
  2. Run the container:
    docker container run -it my-mcp
    

Option 2: Local Setup

  1. Create and activate virtual environment:

    pip install uv
    uv venv .venv
    # Windows
    .venv\Scripts\activate
    # Unix/MacOS
    source .venv/bin/activate
    
  2. Run the application:

    cd openai-agent/
    uv run agent.py
    

💬 Using the AI Agent

  1. To create an EC2 instance:

    Enter your command: Create an EC2 instance
    
  2. To terminate an EC2 instance:

    Enter your command: Terminate EC2 instance with ID <instance-id>
    

⚠️ Word of Caution

  • IAM Role and Credentials: Please create AWS IAM roles and credentials at your own risk. Ensure you follow AWS best practices for security.
  • Billing and Security: This app is a proof of concept (POC) and is intended for learning purposes only. We are not responsible for any billing issues or security incidents.

📚 Learnings

This project demonstrates:

  1. How to integrate MCP servers with OpenAI Agents SDK
  2. How to build a simple AI-driven application for AWS resource management

Enjoy exploring the power of AI and MCP servers! 🌟

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选