MCP Azure DevOps Server

MCP Azure DevOps Server

An open-source server that enables AI agents to interact with Azure DevOps projects through the Model Context Protocol, providing tools for managing work items, wikis, and repositories to streamline development workflows.

Category
访问服务器

README

mcp-azure-devops

An open-source Model Context Protocol (MCP) server for seamless integration with Azure DevOps.

Mission

To create a robust, open-source Model Context Protocol (MCP) server that provides seamless integration with Azure DevOps. This server will empower AI agents to interact with Azure DevOps projects, managing work items, wikis, and repositories, thereby streamlining development workflows.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Core Features

The MCP server will expose a set of tools to interact with Azure DevOps, categorized by area.

Implemented Features

Work Item Management (CRUD)

  • create_work_item (supports Epic, User Story, Task, Bug, and work item linking)
  • get_work_item (by ID)
  • update_work_item (by ID, supports work item linking)
  • delete_work_item (by ID)
  • search_work_items (using WIQL - Work Item Query Language)

Wiki Management (CRUD)

  • create_wiki_page
  • get_wiki_page (by path)
  • update_wiki_page (by path)
  • delete_wiki_page (by path)
  • list_wiki_pages
  • get_wikis
  • create_wiki

Repository Management (Read-only)

  • list_repositories
  • list_files (in a repository)
  • get_file_content

Project Scoping

  • set_project_context: A special tool to set the active project for subsequent commands.
  • clear_project_context: To revert to the organization-level scope.
  • get_projects: To list all projects in the organization.

Server Documentation

  • list_available_tools: Lists all available tools.
  • get_tool_documentation: Gets the documentation for a specific tool.

Planned Features

  • Repository Management (Write operations):
    • create_repository
    • create_pull_request
    • manage_branches
  • Pipeline Management:
    • trigger_build
    • get_build_status
    • list_pipelines

Getting Started

This guide will walk you through setting up the mcp-azure-devops server.

Prerequisites

  • Python 3.10 or higher
  • pip and venv for managing Python packages

Installation Steps

  1. Clone the Repository:

    git clone https://github.com/xrmghost/mcp-azure-devops.git
    cd mcp-azure-devops
    
  2. Create and Activate a Virtual Environment: It's highly recommended to use a virtual environment to manage the project's dependencies.

    # For Windows
    python -m venv .venv
    .\.venv\Scripts\activate
    
    # For macOS/Linux
    python3 -m venv .venv
    source .venv/bin/activate
    
  3. Install Dependencies: Install the project and its dependencies in editable mode.

    pip install -e .
    

Configuration

  1. Generate an Azure DevOps Personal Access Token (PAT):

    • Navigate to your Azure DevOps organization.
    • Go to User settings > Personal Access Tokens.
    • Click + New Token.
    • Give your token a name (e.g., mcp-server-token).
    • Select the organization.
    • Set the expiration date.
    • For the scopes, you will need to grant the following permissions at a minimum:
      • Work Items: Read & write
      • Wiki: Read & write
      • Code: Read
    • Click Create and copy the token immediately. You will not be able to see it again.
  2. Configure the MCP Server in Cline:

    • Open your cline_mcp_settings.json file.
    • Note: The location of this file can vary. A common location on Windows is C:\Users\<YourUsername>\AppData\Roaming\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json. If you can't find it, you can search your user's home directory for the file.

    • Add a new entry for the mcp-azure-devops server. The command should be mcp-azure-devops.

    Here is an example configuration. You must use the full, absolute path to the mcp-azure-devops.exe executable created inside your virtual environment.

    {
      "mcpServers": {
        "mcp-azure-devops": {
          "command": "C:\\path\\to\\your\\project\\mcp-azure-devops\\.venv\\Scripts\\mcp-azure-devops.exe",
          "args": [],
          "env": {
            "AZURE_DEVOPS_ORG_URL": "https://dev.azure.com/your-organization",
            "AZURE_DEVOPS_PAT": "your-personal-access-token"
          },
          "disabled": false,
          "autoApprove": []
        }
      }
    }
    
    • Replace your-organization with your Azure DevOps organization name and your-personal-access-token with the PAT you generated.
  3. Restart Cline: Restart your Cline application to load the new MCP server.

Acknowledgements

This project was inspired by the mcp-atlassian server, which provides similar functionality for Jira and Confluence. You can find it here: https://github.com/pashpashpash/mcp-atlassian.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选