MCP Azure DevOps Server
An open-source server that enables AI agents to interact with Azure DevOps projects through the Model Context Protocol, providing tools for managing work items, wikis, and repositories to streamline development workflows.
README
mcp-azure-devops
An open-source Model Context Protocol (MCP) server for seamless integration with Azure DevOps.
Mission
To create a robust, open-source Model Context Protocol (MCP) server that provides seamless integration with Azure DevOps. This server will empower AI agents to interact with Azure DevOps projects, managing work items, wikis, and repositories, thereby streamlining development workflows.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Core Features
The MCP server will expose a set of tools to interact with Azure DevOps, categorized by area.
Implemented Features
Work Item Management (CRUD)
create_work_item(supports Epic, User Story, Task, Bug, and work item linking)get_work_item(by ID)update_work_item(by ID, supports work item linking)delete_work_item(by ID)search_work_items(using WIQL - Work Item Query Language)
Wiki Management (CRUD)
create_wiki_pageget_wiki_page(by path)update_wiki_page(by path)delete_wiki_page(by path)list_wiki_pagesget_wikiscreate_wiki
Repository Management (Read-only)
list_repositorieslist_files(in a repository)get_file_content
Project Scoping
set_project_context: A special tool to set the active project for subsequent commands.clear_project_context: To revert to the organization-level scope.get_projects: To list all projects in the organization.
Server Documentation
list_available_tools: Lists all available tools.get_tool_documentation: Gets the documentation for a specific tool.
Planned Features
- Repository Management (Write operations):
create_repositorycreate_pull_requestmanage_branches
- Pipeline Management:
trigger_buildget_build_statuslist_pipelines
Getting Started
This guide will walk you through setting up the mcp-azure-devops server.
Prerequisites
- Python 3.10 or higher
pipandvenvfor managing Python packages
Installation Steps
-
Clone the Repository:
git clone https://github.com/xrmghost/mcp-azure-devops.git cd mcp-azure-devops -
Create and Activate a Virtual Environment: It's highly recommended to use a virtual environment to manage the project's dependencies.
# For Windows python -m venv .venv .\.venv\Scripts\activate # For macOS/Linux python3 -m venv .venv source .venv/bin/activate -
Install Dependencies: Install the project and its dependencies in editable mode.
pip install -e .
Configuration
-
Generate an Azure DevOps Personal Access Token (PAT):
- Navigate to your Azure DevOps organization.
- Go to User settings > Personal Access Tokens.
- Click + New Token.
- Give your token a name (e.g.,
mcp-server-token). - Select the organization.
- Set the expiration date.
- For the scopes, you will need to grant the following permissions at a minimum:
- Work Items: Read & write
- Wiki: Read & write
- Code: Read
- Click Create and copy the token immediately. You will not be able to see it again.
-
Configure the MCP Server in Cline:
- Open your
cline_mcp_settings.jsonfile. -
Note: The location of this file can vary. A common location on Windows is
C:\Users\<YourUsername>\AppData\Roaming\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json. If you can't find it, you can search your user's home directory for the file. - Add a new entry for the
mcp-azure-devopsserver. The command should bemcp-azure-devops.
Here is an example configuration. You must use the full, absolute path to the
mcp-azure-devops.exeexecutable created inside your virtual environment.{ "mcpServers": { "mcp-azure-devops": { "command": "C:\\path\\to\\your\\project\\mcp-azure-devops\\.venv\\Scripts\\mcp-azure-devops.exe", "args": [], "env": { "AZURE_DEVOPS_ORG_URL": "https://dev.azure.com/your-organization", "AZURE_DEVOPS_PAT": "your-personal-access-token" }, "disabled": false, "autoApprove": [] } } }- Replace
your-organizationwith your Azure DevOps organization name andyour-personal-access-tokenwith the PAT you generated.
- Open your
-
Restart Cline: Restart your Cline application to load the new MCP server.
Acknowledgements
This project was inspired by the mcp-atlassian server, which provides similar functionality for Jira and Confluence. You can find it here: https://github.com/pashpashpash/mcp-atlassian.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。