MCP Backlog Server

MCP Backlog Server

Manages backlog items and todos with status tracking, priorities, and dependencies. Stores work items as human-readable markdown files with automatic versioning.

Category
访问服务器

README

MCP Backlog Server

A Model Context Protocol (MCP) server for managing backlog items and todos. This server provides a structured way to track work items, their status, and associated tasks.

Features

  • Backlog Management: Create, read, update, and archive backlog items
  • Todo Tracking: Manage todos within backlog items with dependencies
  • Status Workflow: Track items through states: new → ready → review → done
  • Priority Levels: Organize items by high, medium, or low priority
  • Versioning: Automatic versioning when amending backlog items
  • Markdown Storage: Human-readable markdown files with frontmatter

Installation

Quick Start (Zero Install)

Using NPX (Node.js):

npx -y github:rwese/mcp-backlog

Using Bunx (Bun - Faster):

bunx --bun github:rwese/mcp-backlog

Global Installation

With Bun (Recommended):

# From GitHub (latest)
bun add -g github:rwese/mcp-backlog

# From NPM (when published)
bun add -g @rwese/mcp-backlog

With NPM:

# From GitHub
npm install -g github:rwese/mcp-backlog

# From NPM (when published)
npm install -g @rwese/mcp-backlog

From Source

git clone https://github.com/rwese/mcp-backlog.git
cd mcp-backlog
bun install  # or npm install
bun run build  # or npm run build

Usage

In your MCP client configuration

Add to your MCP client's configuration file:

Using NPX from GitHub (Recommended):

{
  "mcpServers": {
    "backlog": {
      "command": "npx",
      "args": ["-y", "github:rwese/mcp-backlog"]
    }
  }
}

Using Bunx (Faster):

{
  "mcpServers": {
    "backlog": {
      "command": "bunx",
      "args": ["--bun", "github:rwese/mcp-backlog"]
    }
  }
}

Using global install:

{
  "mcpServers": {
    "backlog": {
      "command": "mcp-backlog"
    }
  }
}

Using NPX:

{
  "mcpServers": {
    "backlog": {
      "command": "npx",
      "args": ["@rwese/mcp-backlog"]
    }
  }
}

Using local build:

{
  "mcpServers": {
    "backlog": {
      "command": "node",
      "args": ["/path/to/mcp-backlog/dist/index.js"]
    }
  }
}

Tools

backlog-read

List and filter backlog items.

Arguments:

  • status (optional): Filter by status (new, ready, review, done, reopen, wontfix)
  • priority (optional): Filter by priority (high, medium, low)

backlog-write

Create and manage backlog items.

Arguments:

  • action: Operation to perform (create, list, amend, approve, submit, reopen, wontfix)
  • topic: Topic name for the backlog item
  • description: Description of the work item
  • priority (optional): Priority level (default: medium)
  • status (optional): Status for amend operation

Examples:

// Create a new backlog item
{
  "action": "create",
  "topic": "Add user authentication",
  "description": "Implement JWT-based authentication",
  "priority": "high"
}

// Amend an existing item
{
  "action": "amend",
  "topic": "Add user authentication",
  "status": "ready"
}

backlog-done

Mark backlog items as complete.

Arguments:

  • action: done or list
  • topic: Topic name to mark as done
  • summary (optional): Completion summary

backlog-todo-read

List todos for a backlog item.

Arguments:

  • topic: Backlog item topic (required)
  • status (optional): Filter by status
  • batch (optional): Filter by batch

backlog-todo-write

Create and update todos within backlog items.

Arguments:

  • action: create, update, or list
  • topic: Backlog item topic (required)
  • todoId: Todo ID (for update)
  • content: Todo content
  • status: Todo status (pending, in_progress, completed, cancelled)
  • dependencies: Array of todo IDs that must complete first
  • batch: Batch identifier

backlog-todo-done

Mark todos as complete with dependency validation.

Arguments:

  • action: done or list
  • topic: Backlog item topic (required)
  • todoId: Todo ID to mark as done

Directory Structure

Default Location (XDG-compliant)

By default, the server stores backlog data in XDG-compliant directories with multi-project isolation:

~/.local/share/mcp-backlog/
└── projects/
    └── <project-name>/
        ├── Backlog/
        │   └── <topic-name>/
        │       ├── item.md       # Backlog item details
        │       └── todos.json    # Associated todos
        └── COMPLETED_Backlog/
            ├── DONE_<topic>-v1.md
            └── WONTFIX_<topic>.md

Multi-Project Support

Each project gets its own isolated directory:

  • Git repositories: Uses the repository root directory name as project identifier
  • Non-git projects: Uses directory name + hash for uniqueness

This allows you to use the same MCP server across multiple projects without conflicts.

Legacy Support

For backward compatibility, if you have an existing .agent/ directory in your current working directory, it will be used instead of the XDG directory.

Custom Locations

You can override the default location using environment variables:

Option 1: Set a custom backlog directory

export MCP_BACKLOG_DIR="/path/to/your/backlog"

Option 2: Set XDG_DATA_HOME (affects all XDG-compliant apps)

export XDG_DATA_HOME="/path/to/data"
# Backlog will be stored at: /path/to/data/mcp-backlog/

Add these to your MCP client configuration:

{
  "mcpServers": {
    "backlog": {
      "command": "mcp-backlog",
      "env": {
        "MCP_BACKLOG_DIR": "/custom/path"
      }
    }
  }
}

Configuration

See CONFIGURATION.md for detailed information about:

  • XDG Base Directory support
  • Multi-project isolation
  • Environment variables
  • Custom storage locations
  • Platform-specific defaults

Development

Run tests

bun test

Build

bun run build

Workflow

  1. Create a backlog item with status "new"
  2. Submit to move it to "ready" (ready for work)
  3. Amend to update status to "review" when work is done
  4. Approve to move from "review" to "done"
  5. Done to archive the completed item

Or use reopen to send items back for more work, or wontfix to archive without completing.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选