MCP Beancount Tool
Enables interaction with local Beancount accounting ledgers through structured tools for viewing accounts, balances, and transactions, as well as inserting/removing transactions and answering natural-language questions via BeanQuery. Provides deterministic, validated, and auditable financial data operations with offline-first functionality.
README
MCP Beancount Tool — Project Documentation
Description
- Build an MCP server that integrates with Beancount 3.2.0 to expose safe, structured tools for: viewing accounts, balances, income sheet (income statement), and transactions; inserting new transactions; removing transactions; and answering natural‑language questions via BeanQuery.
- Provide deterministic, validated, and auditable interactions with a local Beancount ledger, suitable for MCP‑compatible clients (e.g., IDE agents or chat assistants) operating offline.
- Emphasize correctness (balanced postings, type‑checked inputs), safety (file locking, atomic writes, backups), and usability (clear schemas and messages). Each created transaction receives a stable unique identifier to support safe updates/deletions.
Requirements
- Functional
- List accounts: return name, type, open/close metadata, currencies, and optional tags/commodities.
- Balances: compute account and roll‑up balances at a date or over a period; optionally convert using available price data.
- Income sheet: produce an income statement (Income/Expenses and net result) for a specified period.
- List transactions: filter by date range, account(s), payee, narration, tags, and metadata; include postings and totals.
- Insert transaction: accept structured input (date, flag, payee, narration, postings, metadata), enforce balance; assign
txn_id(UUID) if missing; validate with Beancount before persisting. - Remove transaction: delete by
txn_id(required for deletion); refuse ambiguous deletes; validate resulting ledger. - Query (BeanQuery): execute read‑only BeanQuery strings and return typed rows/columns.
- Natural‑language Q&A: map NL questions to safe BeanQuery templates (read‑only); return results and the generated query for transparency.
- Dry‑run mode for mutations to preview effects without writing.
- Non‑functional
- Local‑first and offline; no network dependencies during normal operation.
- Performance targets appropriate for 100k+ postings; avoid re‑parsing on trivial reads when possible.
- Deterministic output formats and stable ordering for repeatability.
- Clear, actionable errors (parse issues, validation failures, unbalanced postings, ambiguous matches).
- Strong auditability: atomic writes, automatic timestamped backups, and file locking to prevent concurrent corruption.
- Technical
- Beancount 3.2.0 for parsing, validation, and query (
beancount.loader,beancount.core.*,beancount.query). - Language/runtime: Python 3.11+.
- MCP server SDK (Python) using the latest
modelcontextprotocol/python-sdk; expose tools with JSON‑schema input/output; define stable tool names and schemas. - Transport: HTTP transport from the MCP Python SDK (server runs over HTTP).
- Testing:
pytest; sample fixture ledgers; golden files for tool responses where applicable. - Cross‑platform file locking and atomic replace on write; UTF‑8 encoding.
- Configuration via file and environment: main ledger path, default currency, price/commodities options, locale/timezone.
- Beancount 3.2.0 for parsing, validation, and query (
- Security & Privacy
- Operate only on configured ledger roots; reject path traversal/out‑of‑scope files.
- Sanitize and bound NL→BeanQuery generation to read‑only, parameterized templates; never perform writes from NL intents.
- Never transmit ledger data over network; logs must redact sensitive fields when necessary.
Tasks
- Project scaffolding
- Initialize Python project with
uv, dependency pins (Beancount 3.2.0), and basic packaging. - Add configuration loader (env + config file) for ledger path and options.
- Set up
pytestwith sample fixture ledgers for repeatable tests. - Provide a minimal example ledger at
tests/fixtures/example.beancountfor testing.
- Initialize Python project with
- MCP server foundation
- Integrate the latest
modelcontextprotocol/python-sdk. - Use HTTP transport for the server; document default port and configuration.
- Scaffold server entrypoint and lifecycle (no business logic yet).
- Define tool manifests with JSON schemas for inputs/outputs and consistent error models.
- Integrate the latest
- Ledger loading & validation
- Implement loader using
beancount.loaderwith include handling, cache, and diagnostics capture. - Provide a validation layer to surface Beancount errors/warnings in a structured form.
- Implement loader using
- Read‑only tools
list_accounts: enumerate accounts with metadata and inferred types.balance: compute balances at date/period; include options for cost/value and conversions when price data exists.income_sheet: generate period income statement (Income, Expenses, Net) with grouping and totals.list_transactions: filters (date/account/payee/tag/metadata) and pagination; include postings.query: execute BeanQuery safely; return columns + typed rows.
- Mutation tools
insert_transaction: define input schema; normalize/validate postings; auto‑assigntxn_id; pretty‑format; atomic write with backup; re‑load to verify.remove_transaction: requiretxn_id; locate uniquely; remove; atomic write; re‑load to verify.- Introduce optional
dry_runflag for both mutations; return proposed diff.
- Natural‑language layer
- Implement a rule/template‑based NL→BeanQuery mapper for common intents (balances, spending by category, income by month, etc.).
- Validate generated queries as read‑only; expose the final query in responses for transparency.
- Reliability & UX
- Add file locking, atomic replace, and timestamped backups; configurable backup retention.
- Normalize amounts/commodities and present deterministic output ordering.
- Structured, user‑facing error messages with remediation hints.
- Testing & examples
- Unit tests for each tool, including edge cases (unbalanced inserts, ambiguous deletes, parse errors).
- End‑to‑end tests against fixture ledgers and golden responses.
- Example configuration and sample queries in docs.
- Packaging & release
- Package as a Python distribution; pin dependencies; provide entrypoint for MCP server.
- Versioning and changelog; minimal quickstart documentation for MCP clients.
MCP SDK & Transport
- SDK: Use the latest
modelcontextprotocol/python-sdk(installed asmodelcontextprotocol). - Transport: HTTP transport. The server will expose an HTTP endpoint for MCP clients; default host/port and CORS/security considerations will be documented alongside configuration. No stdio transport is planned for the default setup.
Development (uv)
- Create and sync the environment:
uv sync(installs project and dev dependencies)
- Run tests:
uv run -m pytest
- Lint (if desired):
uv run ruff check .
Example configuration
tests/fixtures/mcp-beancount.tomldemonstrates a minimal config pointing at the bundled example ledger. Copy and adjust paths before runninguv run mcp-beancount --config <file>.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。