MCP Boilerplate
A server that implements the Model Context Protocol, providing a standardized way to connect AI models to different data sources and tools.
README
MCP boilerplate: Model Context Protocol Server
This server implements the Model Context Protocol (MCP) for global use as a boilerplate. It provides a standardized way to connect AI models to different data sources and tools using the Model Context Protocol.
Features
- Implements the MCP Server-Sent Events (SSE) transport
- Provides a robust structure for building custom MCP servers
- Includes example tools with proper type definitions
- Secure authentication with API key
- Logging capabilities with different severity levels
- Session management for multiple client connections
- Graceful shutdown handling for SIGINT and SIGTERM signals
Tools
The server currently includes the following example tool:
calculator: Performs basic arithmetic operations (add, subtract, multiply, divide)
For information on how to add your own custom tools, check out the Extending the Boilerplate section.
Configuration
The server configuration is centralized in src/config.ts. This makes it easy to adjust settings without modifying multiple files.
// Essential configuration options
export const config = {
server: {
name: "mcp-boilerplate",
version: "1.0.0",
port: parseInt(process.env.PORT || "4005"),
host: process.env.HOST || "localhost",
apiKey: process.env.API_KEY || "dev_key",
},
sse: {
// How often to send keepalive messages (in milliseconds)
keepaliveInterval: 30000,
// Whether to send ping events in addition to comments
usePingEvents: true,
// Initial connection message
sendConnectedEvent: true,
},
tools: {
// Number of retries for failed tool executions
maxRetries: 3,
// Delay between retries (in milliseconds)
retryDelay: 1000,
// Whether to send notifications about tool execution status
sendNotifications: true,
},
logging: {
// Default log level
defaultLevel: "debug",
// How often to send log messages (in milliseconds)
logMessageInterval: 10000,
},
};
Troubleshooting SSE Timeouts
If you're experiencing "Body timeout error" with your MCP connection:
- Decrease
keepaliveIntervalto send more frequent keepalive messages (e.g., 15000ms) - Ensure
usePingEventsis enabled for additional connection stability - Check for any proxy timeouts if you're using a proxy server
Setup
- Install dependencies:
npm install
- Create a
.envfile with the following variables:
PORT=4005
API_KEY=your_api_key
- Build the project:
npm run build
- Start the server:
npm run start:sse
Development
# Start in development mode with hot reloading
npm run start
# Start with PM2 for production
npm run start:pm2
# Development mode with nodemon
npm run dev
API Endpoints
/health: Health check endpoint that returns server status and version/sse: SSE endpoint for establishing MCP connections (requires API key)/messages: Message handling endpoint for client-server communication
MCP Configuration
To connect an MCP to this server, add the following configuration:
{
"mcpServers": {
"mcp-server": {
"url": "http://localhost:4005/sse?API_KEY={{your_api_key_here}}"
}
}
}
Extending the boilerplate
Adding Custom Tools
Follow these steps to add a new tool to the MCP server:
-
Create your tool handler:
- Add your new tool handler in
src/tools.tsfile or create a new file in thesrc/toolsdirectory - The tool should follow the
ToolHandlerinterface
- Add your new tool handler in
-
Configure your tool:
- Add your tool configuration to the
toolConfigsarray insrc/tools.ts - Define the name, description, input schema, and handler for your tool
- Add your tool configuration to the
-
Export and register your tool:
- If you created a separate file, export your handler and import it in
src/tools.ts - Make sure your tool is properly registered in the
toolConfigsarray
- If you created a separate file, export your handler and import it in
Example:
// In src/tools.ts (adding directly to the toolConfigs array)
{
name: "myTool",
description: "My tool description",
inputSchema: {
type: "object" as const,
properties: {},
required: [],
},
handler: async () => {
return createSuccessResult({ result: "Tool result" });
},
}
Error Handling
The server implements comprehensive error handling:
- All operations are wrapped in try/catch blocks
- Proper validation for parameters and inputs
- Appropriate error messages for better debugging
- Helper functions for creating standardized error and success responses
Security Considerations
- API key authentication for all connections
- Type validation for all parameters
- No hard-coded sensitive information
- Proper error handling to prevent information leakage
- Session-based transport management
MCP Protocol Features
This boilerplate supports the core MCP features:
- Tools: List and call tools with proper parameter validation
- Logging: Various severity levels (debug, info, notice, warning, error, critical, alert, emergency)
- Server configuration: Name, version, and capabilities
Session Management
The server manages client sessions through:
- Unique session IDs for each client connection
- Tracking of active transports by session ID
- Automatic cleanup of disconnected sessions
- Connection status tracking
Additional Resources
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。