MCP Brain Service

MCP Brain Service

Enables character management and semantic search for the Auto-Movie application through WebSocket communication. Supports creating characters with personality/appearance descriptions and finding similar characters using natural language queries with embedding-based similarity matching.

Category
访问服务器

README

MCP Brain Service

A Python-based WebSocket service that provides character embedding and semantic search functionality for the Auto-Movie application. Built with FastAPI, Neo4j, and custom embedding generation.

Features

  • Character Management: Create and store characters with personality and appearance descriptions
  • Embedding Generation: Automatic text embedding generation for semantic search
  • Semantic Search: Find similar characters using natural language queries
  • WebSocket API: Real-time MCP (Model Context Protocol) communication
  • Project Isolation: Characters are isolated by project ID
  • Performance Optimized: P95 response time < 1 minute for semantic search

Architecture

  • FastAPI: Web framework with WebSocket support
  • Neo4j: Graph database for character storage (optional)
  • Custom Embedding Service: Deterministic embedding generation (Jina v4 ready)
  • Pydantic: Data validation and serialization
  • Pytest: Comprehensive test suite with contract, integration, unit, and performance tests

Quick Start

Prerequisites

  • Python 3.11+
  • Neo4j (optional - service runs without database)

Installation

  1. Clone the repository:
git clone <repository-url>
cd mcp-brain-service
  1. Install dependencies:
pip install -r requirements.txt
pip install -r requirements-dev.txt

Running the Service

  1. Start the WebSocket server:
python -m uvicorn src.main:app --host 0.0.0.0 --port 8002 --reload
  1. The service will be available at:
    • WebSocket endpoint: ws://localhost:8002/
    • Health check: http://localhost:8002/health

Configuration

Environment variables:

  • NEO4J_URI: Neo4j connection URI (default: neo4j://localhost:7687)
  • NEO4J_USER: Neo4j username (default: neo4j)
  • NEO4J_PASSWORD: Neo4j password (default: password)

API Usage

Create Character

Send a WebSocket message to create a new character:

{
  "tool": "create_character",
  "project_id": "your_project_id",
  "name": "Gandalf",
  "personality_description": "A wise and powerful wizard, mentor to Frodo Baggins.",
  "appearance_description": "An old man with a long white beard, a pointy hat, and a staff."
}

Response:

{
  "status": "success",
  "message": "Character created successfully.",
  "character_id": "unique_character_id"
}

Find Similar Characters

Send a WebSocket message to find similar characters:

{
  "tool": "find_similar_characters",
  "project_id": "your_project_id",
  "query": "A powerful magic user"
}

Response:

{
  "status": "success",
  "results": [
    {
      "id": "character_id",
      "name": "Gandalf",
      "similarity_score": 0.95
    }
  ]
}

Error Handling

All errors return a consistent format:

{
  "status": "error",
  "message": "Error description"
}

Testing

Run the complete test suite:

# All tests
pytest

# Contract tests
pytest tests/contract/

# Integration tests  
pytest tests/integration/

# Unit tests
pytest tests/unit/

# Performance tests
pytest tests/performance/

Test Categories

  • Contract Tests: WebSocket API contract validation
  • Integration Tests: End-to-end user story validation
  • Unit Tests: Input validation and model testing
  • Performance Tests: Response time and concurrency testing

Development

Project Structure

src/
├── models/          # Pydantic data models
├── services/        # Business logic services
├── lib/            # Database and utility components
└── main.py         # FastAPI application entry point

tests/
├── contract/       # API contract tests
├── integration/    # End-to-end tests
├── unit/          # Unit tests
└── performance/   # Performance tests

Code Quality

  • Linting: Configured with Ruff
  • Type Hints: Full type annotation coverage
  • Validation: Pydantic models with comprehensive validation
  • Error Handling: Structured error responses and logging

Running Tests in Development

# Start the service
python src/main.py

# In another terminal, run tests
pytest tests/contract/test_websocket.py -v

Production Deployment

Docker (Recommended)

FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt

COPY src/ ./src/
EXPOSE 8002

CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "8002"]

Environment Variables

Required for production:

NEO4J_URI=neo4j://your-neo4j-host:7687
NEO4J_USER=your-username
NEO4J_PASSWORD=your-password

Health Monitoring

The service provides a health endpoint at /health for monitoring:

curl http://localhost:8002/health
# Response: {"status": "healthy"}

Performance Characteristics

  • P95 Response Time: < 1 minute for semantic search (typically < 10ms)
  • Concurrency: Supports multiple concurrent WebSocket connections
  • Memory Usage: Optimized for embedding storage and similarity calculations
  • Database: Optional Neo4j integration with graceful degradation

Contributing

  1. Follow TDD principles - write tests first
  2. Ensure all tests pass: pytest
  3. Run linting: ruff check src/ tests/
  4. Update documentation for API changes

License

[Your License Here]

Support

For issues and questions, please refer to the project's issue tracker.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选