MCP Business AI Transformation

MCP Business AI Transformation

Enterprise-grade MCP server with multi-agent system that enables AI-powered business transformation across finance, healthcare, retail, manufacturing, and technology domains through specialized agents for data analysis, API execution, and report generation.

Category
访问服务器

README

MCP Business AI Transformation

Enterprise-grade MCP (Model Context Protocol) server with multi-agent system for business AI transformation.

🏗️ Architecture Overview

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Agent Layer   │◄──►│   MCP Gateway    │◄──►│ Business APIs   │
│  (Orchestrator) │    │  (Protocol Hub)  │    │  (External)     │
└─────────────────┘    └──────────────────┘    └─────────────────┘
         │                       │                       │
         ▼                       ▼                       ▼
┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   LLM Fabric    │    │ State Manager    │    │ Monitoring Hub  │
│ (Multi-Model)   │    │ (Redis+Postgres) │    │ (Observability) │
└─────────────────┘    └──────────────────┘    └─────────────────┘

🚀 Features

Core MCP Server

  • FastAPI-based high-performance server
  • MCP Protocol compliant (2024-11-05 spec)
  • Multi-provider LLM support (Evolution Foundation Models, OpenAI, HuggingFace)
  • Circuit breaker pattern for external API resilience
  • Rate limiting with Redis-based sliding window
  • JWT & API Key authentication
  • Prometheus metrics and OpenTelemetry tracing

Multi-Agent System

  • Specialized Agents: Data Analyst, API Executor, Business Validator, Report Generator
  • Agent Registry for dynamic agent management
  • Message Bus for inter-agent communication
  • Task Orchestration with intelligent agent selection
  • LangChain/LlamaIndex integration for advanced AI capabilities

Enterprise Features

  • Real-time Dashboard with React + TypeScript
  • Business Domain Support: Finance, Healthcare, Retail, Manufacturing, Technology
  • Observability Stack: Prometheus, Grafana, Jaeger
  • Docker Compose for easy deployment
  • Production-ready with security best practices

🛠️ Technology Stack

Frontend

  • Next.js 15 with App Router
  • TypeScript 5 for type safety
  • Tailwind CSS 4 with shadcn/ui components
  • Real-time updates with WebSocket support

Backend

  • Python 3.11 with FastAPI
  • PostgreSQL for persistent storage
  • Redis for caching and rate limiting
  • AsyncIO for high concurrency

AI/ML

  • Evolution Foundation Models (Cloud.ru)
  • OpenAI API compatibility
  • LangChain for agent orchestration
  • LlamaIndex for data indexing

DevOps

  • Docker containerization
  • Prometheus monitoring
  • Grafana dashboards
  • Jaeger distributed tracing

📦 Quick Start

Prerequisites

  • Docker & Docker Compose
  • Node.js 18+ (for local development)
  • Python 3.11+ (for local development)

Environment Configuration

Create a .env file:

# API Keys
EVOLUTION_API_KEY=your_evolution_api_key
OPENAI_API_KEY=your_openai_api_key
HUGGINGFACE_API_KEY=your_huggingface_api_key

# Security
SECRET_KEY=your-super-secret-key-change-in-production

# Database (optional, defaults work with Docker)
DATABASE_URL=postgresql+asyncpg://postgres:password@localhost:5432/mcp_db
REDIS_URL=redis://localhost:6379

Start the System

# Start all services
docker-compose up -d

# View logs
docker-compose logs -f

# Stop services
docker-compose down

Access Points

  • Frontend Dashboard: http://localhost:3000
  • MCP Server API: http://localhost:8000
  • API Documentation: http://localhost:8000/docs
  • Grafana Dashboard: http://localhost:3001 (admin/admin)
  • Prometheus: http://localhost:9091
  • Jaeger Tracing: http://localhost:16686

🔧 Development

Local Development Setup

Backend (MCP Server)

cd mcp_server
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000

Agent System

cd agent_system
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python main.py

Frontend

npm install
npm run dev

Project Structure

├── src/                          # Next.js frontend
│   ├── app/                      # App Router pages
│   ├── components/               # React components
│   └── lib/                      # Utility functions
├── mcp_server/                   # FastAPI MCP server
│   ├── app/                      # Application code
│   │   ├── api/v1/              # API endpoints
│   │   ├── core/                # Core services
│   │   └── middleware/          # Custom middleware
│   └── tests/                   # Test suite
├── agent_system/                 # Multi-agent system
│   ├── core/                    # Agent framework
│   ├── agents/                  # Specialized agents
│   └── llm/                     # LLM providers
├── docker-compose.yml           # Multi-service deployment
└── docs/                        # Documentation

📊 API Usage

MCP Protocol

The server implements the MCP protocol for tool and resource management:

# Initialize connection
curl -X POST http://localhost:8000/mcp \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "capabilities": {}
    }
  }'

# List available tools
curl -X POST http://localhost:8000/mcp \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 2,
    "method": "tools/list"
  }'

# Execute a tool
curl -X POST http://localhost:8000/mcp \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 3,
    "method": "tools/call",
    "params": {
      "name": "financial_analyzer",
      "arguments": {
        "data": {...}
      }
    }
  }'

REST API

# Create a business task
curl -X POST http://localhost:8000/api/v1/resources/tasks \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_JWT_TOKEN" \
  -d '{
    "title": "Financial Analysis Q4",
    "description": "Analyze quarterly financial data",
    "domain": "finance",
    "priority": "high"
  }'

# Get system status
curl -X GET http://localhost:8000/api/v1/admin/system/status

# Health check
curl -X GET http://localhost:8000/api/v1/health

🔍 Monitoring & Observability

Metrics

  • Request latency and throughput
  • Agent performance and task completion rates
  • LLM token usage and costs
  • External API success rates and circuit breaker status

Tracing

  • Distributed tracing with Jaeger
  • Request correlation IDs
  • Agent communication tracing

Logging

  • Structured logging with correlation IDs
  • Log levels: DEBUG, INFO, WARNING, ERROR
  • JSON format for easy parsing

🔒 Security

Authentication

  • JWT tokens for user authentication
  • API keys for service-to-service communication
  • Rate limiting per user/API key

Authorization

  • Role-based access control (RBAC)
  • Resource-level permissions
  • CORS configuration

Data Protection

  • Input validation and sanitization
  • SQL injection prevention
  • XSS protection headers

🚀 Deployment

Production Deployment

# Set production environment variables
export NODE_ENV=production
export DEBUG=false

# Deploy with production configurations
docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d

Cloud.ru Evolution AI Agents

The system is designed to deploy on Cloud.ru Evolution AI Agents platform:

  1. Container Registry: Push Docker images to Cloud.ru registry
  2. AI Agent Configuration: Configure agent endpoints and API keys
  3. Load Balancing: Set up load balancer for high availability
  4. Monitoring: Configure Cloud.ru monitoring integration

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

  • Documentation: Check the /docs directory
  • API Docs: Visit http://localhost:8000/docs
  • Issues: Create an issue on GitHub
  • Discussions: Join our GitHub Discussions

🗺️ Roadmap

Phase 1: Core Infrastructure ✅

  • [x] MCP Server implementation
  • [x] Multi-agent system
  • [x] LLM provider integration
  • [x] Basic monitoring

Phase 2: Advanced Features (In Progress)

  • [ ] Advanced agent orchestration
  • [ ] Custom tool development framework
  • [ ] Advanced analytics and reporting
  • [ ] Multi-tenancy support

Phase 3: Enterprise Features (Planned)

  • [ ] Advanced security features
  • [ ] Compliance certifications
  • [ ] Advanced monitoring and alerting
  • [ ] Performance optimization

Phase 4: AI/ML Enhancements (Future)

  • [ ] Custom model training
  • [ ] Advanced prompt engineering
  • [ ] Multi-modal AI capabilities
  • [ ] AutoML integration

Built with ❤️ for enterprise AI transformation

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选