MCP Business AI Transformation
Enterprise-grade MCP server with multi-agent system that enables AI-powered business transformation across finance, healthcare, retail, manufacturing, and technology domains through specialized agents for data analysis, API execution, and report generation.
README
MCP Business AI Transformation
Enterprise-grade MCP (Model Context Protocol) server with multi-agent system for business AI transformation.
🏗️ Architecture Overview
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Agent Layer │◄──►│ MCP Gateway │◄──►│ Business APIs │
│ (Orchestrator) │ │ (Protocol Hub) │ │ (External) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ LLM Fabric │ │ State Manager │ │ Monitoring Hub │
│ (Multi-Model) │ │ (Redis+Postgres) │ │ (Observability) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
🚀 Features
Core MCP Server
- FastAPI-based high-performance server
- MCP Protocol compliant (2024-11-05 spec)
- Multi-provider LLM support (Evolution Foundation Models, OpenAI, HuggingFace)
- Circuit breaker pattern for external API resilience
- Rate limiting with Redis-based sliding window
- JWT & API Key authentication
- Prometheus metrics and OpenTelemetry tracing
Multi-Agent System
- Specialized Agents: Data Analyst, API Executor, Business Validator, Report Generator
- Agent Registry for dynamic agent management
- Message Bus for inter-agent communication
- Task Orchestration with intelligent agent selection
- LangChain/LlamaIndex integration for advanced AI capabilities
Enterprise Features
- Real-time Dashboard with React + TypeScript
- Business Domain Support: Finance, Healthcare, Retail, Manufacturing, Technology
- Observability Stack: Prometheus, Grafana, Jaeger
- Docker Compose for easy deployment
- Production-ready with security best practices
🛠️ Technology Stack
Frontend
- Next.js 15 with App Router
- TypeScript 5 for type safety
- Tailwind CSS 4 with shadcn/ui components
- Real-time updates with WebSocket support
Backend
- Python 3.11 with FastAPI
- PostgreSQL for persistent storage
- Redis for caching and rate limiting
- AsyncIO for high concurrency
AI/ML
- Evolution Foundation Models (Cloud.ru)
- OpenAI API compatibility
- LangChain for agent orchestration
- LlamaIndex for data indexing
DevOps
- Docker containerization
- Prometheus monitoring
- Grafana dashboards
- Jaeger distributed tracing
📦 Quick Start
Prerequisites
- Docker & Docker Compose
- Node.js 18+ (for local development)
- Python 3.11+ (for local development)
Environment Configuration
Create a .env file:
# API Keys
EVOLUTION_API_KEY=your_evolution_api_key
OPENAI_API_KEY=your_openai_api_key
HUGGINGFACE_API_KEY=your_huggingface_api_key
# Security
SECRET_KEY=your-super-secret-key-change-in-production
# Database (optional, defaults work with Docker)
DATABASE_URL=postgresql+asyncpg://postgres:password@localhost:5432/mcp_db
REDIS_URL=redis://localhost:6379
Start the System
# Start all services
docker-compose up -d
# View logs
docker-compose logs -f
# Stop services
docker-compose down
Access Points
- Frontend Dashboard: http://localhost:3000
- MCP Server API: http://localhost:8000
- API Documentation: http://localhost:8000/docs
- Grafana Dashboard: http://localhost:3001 (admin/admin)
- Prometheus: http://localhost:9091
- Jaeger Tracing: http://localhost:16686
🔧 Development
Local Development Setup
Backend (MCP Server)
cd mcp_server
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
Agent System
cd agent_system
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python main.py
Frontend
npm install
npm run dev
Project Structure
├── src/ # Next.js frontend
│ ├── app/ # App Router pages
│ ├── components/ # React components
│ └── lib/ # Utility functions
├── mcp_server/ # FastAPI MCP server
│ ├── app/ # Application code
│ │ ├── api/v1/ # API endpoints
│ │ ├── core/ # Core services
│ │ └── middleware/ # Custom middleware
│ └── tests/ # Test suite
├── agent_system/ # Multi-agent system
│ ├── core/ # Agent framework
│ ├── agents/ # Specialized agents
│ └── llm/ # LLM providers
├── docker-compose.yml # Multi-service deployment
└── docs/ # Documentation
📊 API Usage
MCP Protocol
The server implements the MCP protocol for tool and resource management:
# Initialize connection
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {}
}
}'
# List available tools
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/list"
}'
# Execute a tool
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "financial_analyzer",
"arguments": {
"data": {...}
}
}
}'
REST API
# Create a business task
curl -X POST http://localhost:8000/api/v1/resources/tasks \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{
"title": "Financial Analysis Q4",
"description": "Analyze quarterly financial data",
"domain": "finance",
"priority": "high"
}'
# Get system status
curl -X GET http://localhost:8000/api/v1/admin/system/status
# Health check
curl -X GET http://localhost:8000/api/v1/health
🔍 Monitoring & Observability
Metrics
- Request latency and throughput
- Agent performance and task completion rates
- LLM token usage and costs
- External API success rates and circuit breaker status
Tracing
- Distributed tracing with Jaeger
- Request correlation IDs
- Agent communication tracing
Logging
- Structured logging with correlation IDs
- Log levels: DEBUG, INFO, WARNING, ERROR
- JSON format for easy parsing
🔒 Security
Authentication
- JWT tokens for user authentication
- API keys for service-to-service communication
- Rate limiting per user/API key
Authorization
- Role-based access control (RBAC)
- Resource-level permissions
- CORS configuration
Data Protection
- Input validation and sanitization
- SQL injection prevention
- XSS protection headers
🚀 Deployment
Production Deployment
# Set production environment variables
export NODE_ENV=production
export DEBUG=false
# Deploy with production configurations
docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d
Cloud.ru Evolution AI Agents
The system is designed to deploy on Cloud.ru Evolution AI Agents platform:
- Container Registry: Push Docker images to Cloud.ru registry
- AI Agent Configuration: Configure agent endpoints and API keys
- Load Balancing: Set up load balancer for high availability
- Monitoring: Configure Cloud.ru monitoring integration
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
- Documentation: Check the
/docsdirectory - API Docs: Visit http://localhost:8000/docs
- Issues: Create an issue on GitHub
- Discussions: Join our GitHub Discussions
🗺️ Roadmap
Phase 1: Core Infrastructure ✅
- [x] MCP Server implementation
- [x] Multi-agent system
- [x] LLM provider integration
- [x] Basic monitoring
Phase 2: Advanced Features (In Progress)
- [ ] Advanced agent orchestration
- [ ] Custom tool development framework
- [ ] Advanced analytics and reporting
- [ ] Multi-tenancy support
Phase 3: Enterprise Features (Planned)
- [ ] Advanced security features
- [ ] Compliance certifications
- [ ] Advanced monitoring and alerting
- [ ] Performance optimization
Phase 4: AI/ML Enhancements (Future)
- [ ] Custom model training
- [ ] Advanced prompt engineering
- [ ] Multi-modal AI capabilities
- [ ] AutoML integration
Built with ❤️ for enterprise AI transformation
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。