MCP Calculator Demo
A simple demonstration MCP server built with FastMCP that exposes basic calculator operations (add, subtract, multiply, divide) as tools for MCP clients like GitHub Copilot Agent mode.
README
Day 2 MCP Calculator Demo (FastMCP) This demo contains a simple MCP server built using FastMCP. It demonstrates how to expose tools to MCP clients such as GitHub Copilot Agent mode using a modern Python setup based on uv.
Prerequisites Python 3.10 or newer VS Code No prior virtual environment setup is required.
Step 1: Install uv macOS / Linux curl -LsSf https://astral.sh/uv/install.sh | sh
Restart your terminal after installation.
Windows (PowerShell) irm https://astral.sh/uv/install.ps1 | iex
Verify installation:
uv --version
Step 2: Set Up the Python Environment Initialize the project environment (only needed once):
uv init
This creates: - pyproject.toml - .python-version - A managed virtual environment
Step 3: Install Dependencies Install FastMCP and required dependencies:
uv add fastmcp starlette
This will: - Create a virtual environment automatically - Resolve and lock dependencies - Generate uv.lock
Step 4: Activate the Environment (Optional) You do not need to activate the environment manually when using uv run.
If you want to activate it explicitly:
macOS / Linux source .venv/bin/activate
Windows (PowerShell) .venv\Scripts\activate
Step 5: Run the MCP Server Run the demo MCP server:
uv run python servers\01_calculator_stdio.py.py
You should see output indicating that the MCP server is running.
Available Tools add(a: int, b: int) -> int subtract(a: int, b: int) -> int multiply(a: int, b: int) -> int divide(a: int, b: int) -> Optional[float] Key Files 01_calculator_stdio.py – MCP server implementation pyproject.toml – Project configuration and dependencies uv.lock – Locked dependency versions .python-version – Python runtime version Workshop Notes Do not use pip install Do not create virtual environments manually Always use uv add and uv run This ensures consistent behavior across machines, CI pipelines, and cloud deployments.
MCP Inspector The MCP Inspector is a local web-based tool used to inspect MCP servers, discover tools, send test requests, and view responses.
Install MCP Inspector The MCP Inspector is distributed as an npm package.
Prerequisites:
Node.js 18 or newer npm Run MCP Inspector Start the MCP Inspector UI:
npx @modelcontextprotocol/inspector By default, the Inspector runs at:
http://localhost:6274
Connect to the MCP Server (STDIO) In MCP Inspector:
Transport: stdio Command: uv Arguments: run python <full path to your mcp server>.py Click Connect.
What You Can Do with MCP Inspector Discover available tools Inspect tool schemas Send tool invocation requests View raw MCP messages Inspect errors and responses Workshop Notes MCP Inspector is intended for local development and debugging It is not used in production deployments It helps visualize MCP message flow and tool schemas
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。