
MCP Chat
A command-line interface application that enables interactive chat with AI models through the Anthropic API, supporting document retrieval, command-based prompts, and extensible tool integrations.
README
MCP Chat
MCP Chat is a command-line interface application that enables interactive chat capabilities with AI models through the Anthropic API. The application supports document retrieval, command-based prompts, and extensible tool integrations via the MCP (Model Control Protocol) architecture.
Prerequisites
- Python 3.9+
- Anthropic API Key
Setup
Step 1: Configure the environment variables
- Create or edit the
.env
file in the project root and verify that the following variables are set correctly:
ANTHROPIC_API_KEY="" # Enter your Anthropic API secret key
Step 2: Install dependencies
Option 1: Setup with uv (Recommended)
uv is a fast Python package installer and resolver.
- Install uv, if not already installed:
pip install uv
- Create and activate a virtual environment:
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
uv pip install -e .
- Run the project
uv run main.py
Option 2: Setup without uv
- Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install anthropic python-dotenv prompt-toolkit "mcp[cli]==1.8.0"
- Run the project
python main.py
Usage
Basic Interaction
Simply type your message and press Enter to chat with the model.
Document Retrieval
Use the @ symbol followed by a document ID to include document content in your query:
> Tell me about @deposition.md
Commands
Use the / prefix to execute commands defined in the MCP server:
> /summarize deposition.md
Commands will auto-complete when you press Tab.
Development
Adding New Documents
Edit the mcp_server.py
file to add new documents to the docs
dictionary.
Implementing MCP Features
To fully implement the MCP features:
- Complete the TODOs in
mcp_server.py
- Implement the missing functionality in
mcp_client.py
Linting and Typing Check
There are no lint or type checks implemented.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。