MCP Chatbot
A serverless backend that enables natural language querying of a Postgres database, converting user questions into SQL and returning structured, UI-friendly responses.
README
MCP Chat Backend
This project is a serverless FastAPI backend for a chatbot that generates and executes SQL queries on a Postgres database using OpenAI's GPT models, then returns structured, UI-friendly responses. It is designed to run on AWS Lambda via AWS SAM, but can also be run locally or in Docker.
Features
- FastAPI REST API with a single
/askendpoint - Uses OpenAI GPT models to generate and summarize SQL queries
- Connects to a Postgres (Supabase) database
- Returns structured JSON responses for easy frontend rendering
- CORS enabled for frontend integration
- Deployable to AWS Lambda (SAM), or run locally/Docker
- Verbose logging for debugging (CloudWatch)
Project Structure
├── main.py # Main FastAPI app and Lambda handler
├── requirements.txt # Python dependencies
├── template.yaml # AWS SAM template for Lambda deployment
├── samconfig.toml # AWS SAM deployment config
├── Dockerfile # For local/Docker deployment
├── .gitignore # Files to ignore in git
└── .env # (Not committed) Environment variables
Setup
1. Clone the repository
git clone <your-repo-url>
cd mcp-chat-3
2. Install Python dependencies
python -m venv .venv
source .venv/bin/activate # or .venv\Scripts\activate on Windows
pip install -r requirements.txt
3. Set up environment variables
Create a .env file (not committed to git):
OPENAI_API_KEY=your-openai-key
SUPABASE_DB_NAME=your-db
SUPABASE_DB_USER=your-user
SUPABASE_DB_PASSWORD=your-password
SUPABASE_DB_HOST=your-host
SUPABASE_DB_PORT=your-port
Running Locally
With Uvicorn
uvicorn main:app --reload --port 8080
With Docker
docker build -t mcp-chat-backend .
docker run -p 8080:8080 --env-file .env mcp-chat-backend
Deploying to AWS Lambda (SAM)
- Install AWS SAM CLI
- Build and deploy:
sam build
sam deploy --guided
- Configure environment variables in
template.yamlor via the AWS Console. - The API will be available at the endpoint shown after deployment (e.g.
https://xxxxxx.execute-api.region.amazonaws.com/Prod/ask).
API Usage
POST /ask
- Body:
{ "question": "your question here" } - Response: Structured JSON for chatbot UI, e.g.
{
"messages": [
{
"type": "text",
"content": "Sample 588 has a resistance of 1.2 ohms.",
"entity": {
"entity_type": "sample",
"id": "588"
}
},
{
"type": "list",
"items": ["Item 1", "Item 2"]
}
]
}
- See
main.pyfor the full schema and more details.
Environment Variables
OPENAI_API_KEY: Your OpenAI API keySUPABASE_DB_NAME,SUPABASE_DB_USER,SUPABASE_DB_PASSWORD,SUPABASE_DB_HOST,SUPABASE_DB_PORT: Your Postgres database credentials
Development Notes
- All logs are sent to stdout (and CloudWatch on Lambda)
- CORS is enabled for all origins by default
- The backend expects the frontend to handle the structured response format
License
MIT (or your license here)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。