MCP Chatbot

MCP Chatbot

A serverless backend that enables natural language querying of a Postgres database, converting user questions into SQL and returning structured, UI-friendly responses.

Category
访问服务器

README

MCP Chat Backend

This project is a serverless FastAPI backend for a chatbot that generates and executes SQL queries on a Postgres database using OpenAI's GPT models, then returns structured, UI-friendly responses. It is designed to run on AWS Lambda via AWS SAM, but can also be run locally or in Docker.

Features

  • FastAPI REST API with a single /ask endpoint
  • Uses OpenAI GPT models to generate and summarize SQL queries
  • Connects to a Postgres (Supabase) database
  • Returns structured JSON responses for easy frontend rendering
  • CORS enabled for frontend integration
  • Deployable to AWS Lambda (SAM), or run locally/Docker
  • Verbose logging for debugging (CloudWatch)

Project Structure

├── main.py            # Main FastAPI app and Lambda handler
├── requirements.txt   # Python dependencies
├── template.yaml      # AWS SAM template for Lambda deployment
├── samconfig.toml     # AWS SAM deployment config
├── Dockerfile         # For local/Docker deployment
├── .gitignore         # Files to ignore in git
└── .env               # (Not committed) Environment variables

Setup

1. Clone the repository

git clone <your-repo-url>
cd mcp-chat-3

2. Install Python dependencies

python -m venv .venv
source .venv/bin/activate  # or .venv\Scripts\activate on Windows
pip install -r requirements.txt

3. Set up environment variables

Create a .env file (not committed to git):

OPENAI_API_KEY=your-openai-key
SUPABASE_DB_NAME=your-db
SUPABASE_DB_USER=your-user
SUPABASE_DB_PASSWORD=your-password
SUPABASE_DB_HOST=your-host
SUPABASE_DB_PORT=your-port

Running Locally

With Uvicorn

uvicorn main:app --reload --port 8080

With Docker

docker build -t mcp-chat-backend .
docker run -p 8080:8080 --env-file .env mcp-chat-backend

Deploying to AWS Lambda (SAM)

  1. Install AWS SAM CLI
  2. Build and deploy:
sam build
sam deploy --guided
  • Configure environment variables in template.yaml or via the AWS Console.
  • The API will be available at the endpoint shown after deployment (e.g. https://xxxxxx.execute-api.region.amazonaws.com/Prod/ask).

API Usage

POST /ask

  • Body: { "question": "your question here" }
  • Response: Structured JSON for chatbot UI, e.g.
{
  "messages": [
    {
      "type": "text",
      "content": "Sample 588 has a resistance of 1.2 ohms.",
      "entity": {
        "entity_type": "sample",
        "id": "588"
      }
    },
    {
      "type": "list",
      "items": ["Item 1", "Item 2"]
    }
  ]
}
  • See main.py for the full schema and more details.

Environment Variables

  • OPENAI_API_KEY: Your OpenAI API key
  • SUPABASE_DB_NAME, SUPABASE_DB_USER, SUPABASE_DB_PASSWORD, SUPABASE_DB_HOST, SUPABASE_DB_PORT: Your Postgres database credentials

Development Notes

  • All logs are sent to stdout (and CloudWatch on Lambda)
  • CORS is enabled for all origins by default
  • The backend expects the frontend to handle the structured response format

License

MIT (or your license here)

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选