MCP Code Assistant

MCP Code Assistant

Provides file operations (read/write) with an extensible architecture designed for future C code compilation and executable execution capabilities.

Category
访问服务器

README

MCP Code Assistant

A minimal Model Context Protocol (MCP) server implementation in Python that provides developer tools for file operations, C code compilation, and executable execution.

A learning project for understanding how to build MCP servers from scratch. Designed with an extensible architecture for future enhancements.

Overview

This MCP server communicates using JSON-RPC 2.0 over stdin/stdout, making it compatible with MCP clients and AI assistants that support the Model Context Protocol.

Features

  • File Operations

    • read_file: Read contents from any file on the filesystem
    • write_file: Write contents to files (with automatic directory creation)
  • Future Tools (extensible architecture)

    • Compile C code
    • Run executables
    • Debug tools

Project Structure

mcp-code-assistant/
├── server.py           # Main MCP server implementation
├── logger.py           # Logging utilities (writes to stderr)
├── jsonrpc.py          # JSON-RPC 2.0 message handling
├── dispatcher.py       # Tool registration and dispatch
├── tools/              # Tool implementations
│   ├── __init__.py     # Tools package
│   └── file_ops.py     # File operation tools
├── requirements.txt    # Python dependencies (minimal)
└── README.md           # This file

Requirements

  • Python 3.7 or higher
  • No external dependencies (uses only Python standard library)

Installation

  1. Clone or download this project
  2. No installation needed - uses only stdlib
cd mcp-code-assistant

Usage

Running the Server

The server reads JSON-RPC requests from stdin and writes responses to stdout:

python3 server.py

Testing the Server

You can test the server manually by sending JSON-RPC requests via stdin:

# Start the server
python3 server.py

# Then type (or pipe) JSON-RPC requests:
{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {"protocolVersion": "2024-11-05", "clientInfo": {"name": "test-client", "version": "1.0"}}}

{"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}

{"jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": {"name": "read_file", "arguments": {"path": "README.md"}}}

Using with MCP Clients

Configure your MCP client to run this server. Example configuration:

{
  "mcpServers": {
    "code-assistant": {
      "command": "python3",
      "args": ["/path/to/mcp-code-assistant/server.py"]
    }
  }
}

Available Tools

read_file

Reads the contents of a file from the filesystem.

Parameters:

  • path (string, required): Path to the file (absolute or relative)

Example:

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "tools/call",
  "params": {
    "name": "read_file",
    "arguments": {
      "path": "/home/user/example.txt"
    }
  }
}

write_file

Writes contents to a file on the filesystem. Creates parent directories if needed.

Parameters:

  • path (string, required): Path to the file
  • contents (string, required): Contents to write

Example:

{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "tools/call",
  "params": {
    "name": "write_file",
    "arguments": {
      "path": "/home/user/output.txt",
      "contents": "Hello, World!"
    }
  }
}

Development

Adding New Tools

  1. Create a new file in tools/ (e.g., compile_ops.py)
  2. Define your tool handler functions
  3. Create a TOOLS dictionary with tool definitions
  4. Import and register in tools/__init__.py

Example tool structure:

def my_tool(args):
    """Tool implementation."""
    # Validate args
    # Perform operation
    # Return result dict
    return {"result": "success"}

TOOLS = {
    "my_tool": {
        "handler": my_tool,
        "description": "Description of what the tool does",
        "inputSchema": {
            "type": "object",
            "properties": {
                "param1": {
                    "type": "string",
                    "description": "Parameter description"
                }
            },
            "required": ["param1"]
        }
    }
}

Logging

All logs go to stderr to keep stdout clean for JSON-RPC communication. Use the logger module:

from logger import log_info, log_error, log_debug

log_info("Server started")
log_debug("Debug message")
log_error("Error message")

Protocol Support

  • Protocol Version: 2024-11-05
  • JSON-RPC: 2.0
  • Methods Supported:
    • initialize: Initialize the server connection
    • tools/list: List all available tools
    • tools/call: Execute a tool

License

This is a minimal educational implementation. Use and modify as needed.

Future Enhancements

  • [ ] C code compilation tool (compile_c)
  • [ ] Execute binary tool (run_executable)
  • [ ] Debugging tools
  • [ ] Code analysis tools
  • [ ] Git integration
  • [ ] Project scaffolding tools

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选