MCP Complete Implementation Guide
Provides a complete end-to-end MCP server implementation with file system tools, web scraping capabilities, and system information access. Includes ready-to-use configuration files and integration examples for Claude Desktop, ChatGPT, and other AI models.
README
Model Context Protocol (MCP) - Complete Implementation Guide
🚀 Overview
Model Context Protocol (MCP) is an open standard that enables seamless integration between AI applications and external data sources and tools. This guide provides a complete end-to-end implementation with all necessary configuration files and integration examples for ChatGPT, Claude, and other AI models.
📋 Table of Contents
- What is MCP?
- Benefits
- Prerequisites
- Quick Start
- Server Implementation
- AI Model Integration
- Configuration Files
- Local Development
- Deployment
- Troubleshooting
- Advanced Features
🤔 What is MCP?
MCP (Model Context Protocol) is a standardized way to:
- Connect AI models to external data sources
- Provide tools and functions that AI models can use
- Enable secure and controlled access to resources
- Create reusable components across different AI applications
Key Components:
- MCP Server: Provides tools, resources, and prompts
- MCP Client: AI applications that consume MCP services
- Transport Layer: Communication protocol (stdio, HTTP, WebSocket)
✨ Benefits
- Standardized Integration: Universal protocol for AI model connections
- Security: Controlled access to external resources
- Reusability: One MCP server can serve multiple AI applications
- Extensibility: Easy to add new tools and resources
- Local Development: Run everything locally for privacy and control
🔧 Prerequisites
Required Software:
- Node.js (v18 or later) or Python (3.8+)
- Git
- PowerShell (Windows)
- VS Code (recommended)
For AI Model Integration:
- API keys for your chosen AI models
- Claude Desktop, ChatGPT Desktop, or compatible client
🚀 Quick Start
1. Clone and Setup
# Create project directory
mkdir mcp-implementation
cd mcp-implementation
# Initialize the project
git init
npm init -y # or use Python if preferred
2. Install Dependencies
# For Node.js implementation
npm install @modelcontextprotocol/sdk express cors dotenv
# For Python implementation (alternative)
pip install mcp python-dotenv fastapi uvicorn
3. Run the Example Server
# Start the MCP server
node server.js
# Or for Python
python server.py
4. Configure Your AI Client
Update your AI client configuration (examples provided below for each platform).
🛠️ Server Implementation
Node.js MCP Server
Our MCP server will provide:
- File system tools
- Web scraping capabilities
- System information
- Custom business logic
See server.js for the complete implementation.
Python MCP Server (Alternative)
For Python developers, we also provide a Python implementation in server.py.
🤖 AI Model Integration
Claude Desktop Integration
Claude Desktop has native MCP support. Configuration is done through claude_desktop_config.json.
ChatGPT Integration
Integration through custom plugins or API wrapper. See chatgpt-integration/ directory.
Other AI Models
Generic HTTP client implementation for any AI model that supports external tool calling.
⚙️ Configuration Files
This repository includes configuration files for:
claude_desktop_config.json- Claude Desktop MCP configurationchatgpt-config.json- ChatGPT plugin configurationmcp-config.json- Generic MCP server configuration.env- Environment variables and API keyspackage.json- Node.js dependencies and scripts
🏠 Local Development
Development Scripts
We provide PowerShell scripts for easy development:
scripts/setup.ps1- Initial setup and dependency installationscripts/start-dev.ps1- Start development server with hot reloadscripts/test.ps1- Run tests and validation
Environment Setup
- Copy
.env.exampleto.env - Fill in your API keys and configuration
- Run the setup script
.\scripts\setup.ps1
🚀 Deployment
Local Deployment
# Production build
npm run build
# Start production server
npm start
Docker Deployment
# Build Docker image
docker build -t mcp-server .
# Run container
docker run -p 3000:3000 --env-file .env mcp-server
Cloud Deployment
Instructions for deploying to:
- Heroku
- AWS Lambda
- Google Cloud Functions
- Azure Functions
🔧 Troubleshooting
Common Issues
- Connection Refused: Check if MCP server is running
- Authentication Errors: Verify API keys in
.env - Tool Not Found: Ensure tools are properly registered
- CORS Issues: Check CORS configuration in server
Debugging
# Enable debug logging
$env:DEBUG = "mcp:*"
node server.js
Health Check
# Test server health
curl http://localhost:3000/health
🚀 Advanced Features
Custom Tools
Learn how to create custom tools for your specific use case.
Resource Management
Implement resource caching and management for better performance.
Security
Best practices for securing your MCP server and API keys.
Monitoring
Set up logging and monitoring for production deployments.
📁 Project Structure
mcp-implementation/
├── README.md # This file
├── server.js # Main MCP server (Node.js)
├── server.py # Alternative Python server
├── package.json # Node.js dependencies
├── requirements.txt # Python dependencies
├── .env.example # Environment variables template
├── claude_desktop_config.json # Claude Desktop configuration
├── chatgpt-config.json # ChatGPT integration config
├── mcp-config.json # Generic MCP configuration
├── Dockerfile # Docker container configuration
├── scripts/
│ ├── setup.ps1 # Setup script for Windows
│ ├── start-dev.ps1 # Development server script
│ └── test.ps1 # Testing script
├── examples/
│ ├── claude-integration/ # Claude-specific examples
│ ├── chatgpt-integration/ # ChatGPT integration examples
│ └── generic-client/ # Generic client examples
├── tools/
│ ├── filesystem.js # File system tools
│ ├── web-scraper.js # Web scraping tools
│ └── system-info.js # System information tools
└── tests/
├── server.test.js # Server tests
└── integration.test.js # Integration tests
📚 Next Steps
- Follow the Quick Start guide
- Explore the example implementations
- Configure your preferred AI model
- Customize tools for your use case
- Deploy to your preferred platform
🤝 Contributing
Contributions are welcome! Please read our contributing guidelines and submit pull requests for any improvements.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
If you encounter any issues:
- Check the Troubleshooting section
- Search existing GitHub issues
- Create a new issue with detailed information
Happy coding with MCP! 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。