MCP Content Analyzer

MCP Content Analyzer

Enables comprehensive content analysis through web scraping, document processing (PDF, DOCX, TXT, RTF), screenshot analysis, and local Excel database management. Provides intelligent workflows for extracting, analyzing, and storing content from multiple sources with automated categorization and search capabilities.

Category
访问服务器

README

MCP Content Analyzer ✅ COMPLETE

A comprehensive MCP (Model Context Protocol) server system built with Hono and TypeScript that enables Claude to automatically scrape web content, process documents, analyze screenshots, and manage local Excel databases with intelligent content workflows.

🚀 ALL PHASES COMPLETE - Production Ready System ✅

Complete content analysis pipeline with web scraping, document processing, Excel database management, Docker deployment, and comprehensive documentation.

⚡ Quick Start (2 Minutes) - Easy Distribution

🚀 Recommended: Direct Installation (Bypasses npm cache issues)

# 1. Download and run the installation script
curl -fsSL https://raw.githubusercontent.com/DuncanDam/my-mcp/main/install.sh | bash

# 2. Setup dependencies and configuration (run once)
mcp-content-analyzer setup
mcp-content-analyzer config

# 3. Restart Claude Desktop completely

# 4. Start the analyzer
mcp-content-analyzer start

🔧 Alternative: Direct npm installation (may have cache issues)

# Note: Some users experience npm cache corruption with this method
npm install -g git+https://github.com/DuncanDam/my-mcp.git

# If the above fails, use the installation script method above instead

Traditional Setup:

  1. Automated Setup:

    ./scripts/setup.sh
    
  2. Restart Claude Desktop completely

  3. Test in Claude Desktop:

    Please test the MCP connection by calling test_connection with message "Hello MCP!"
    
  4. Try the main workflow:

    Use analyze_content_workflow to process https://example.com with topic "Testing"
    

🛠️ Complete Tool Suite

🌊 Main Workflow Tools (Recommended)

  • analyze_content_workflow - Complete content analysis pipeline with intelligent fallback
  • scrape_and_save_content - Web scraping workflow with Excel integration

🔧 System Tools

  • test_connection - Test MCP server connectivity
  • get_server_info - Get comprehensive server information

🕸️ Web Processing

  • scrape_webpage - Extract content from URLs with metadata
  • check_url_accessibility - Validate URLs before processing

📄 Document Processing

  • read_document - Extract content from PDF, DOCX, TXT, RTF files
  • analyze_document_metadata - Get document properties and structure
  • extract_document_text - Pure text extraction with formatting
  • process_extracted_text - Process Claude-extracted text from images

📊 Excel Database

  • add_content_entry - Add new entries to Excel database
  • search_similar_content - Find related existing content
  • get_topic_categories - Retrieve available topic categories
  • get_database_stats - Return database metrics and analytics

📚 Comprehensive Documentation

🚢 Deployment Options

Local Development

npm run build    # Build TypeScript
npm start       # Run MCP server
npm run dev     # Development mode with hot reload

Docker Deployment

./scripts/docker-deploy.sh    # Complete Docker setup
docker-compose up -d          # Manual Docker Compose

Production Scripts

./scripts/setup.sh           # Complete automated setup
./scripts/test-connection.sh # Comprehensive testing
./scripts/generate-config.sh # Claude Desktop configuration

🎯 Complete Workflow Examples

Example 1: Web Content Analysis

Use analyze_content_workflow to process https://techcrunch.com/ai-news with topic "AI News"

Example 2: Document Processing

Use analyze_content_workflow to process /path/to/research-paper.pdf with topic "Research"

Example 3: Screenshot Analysis

Share a screenshot with Claude, then:

Use analyze_content_workflow with the text you extracted from that screenshot, sourceDescription "Quarterly report slides", and topic "Business Reports"

🏗️ System Architecture

Complete 7-Phase Implementation:

  • Phase 1: Basic MCP server foundation
  • Phase 2: Excel database operations
  • Phase 3: Web scraping with Playwright
  • Phase 4: Document processing (PDF, DOCX, TXT, RTF)
  • Phase 5: Complete workflow & Hono integration
  • Phase 6: Docker & production setup
  • Phase 7: Documentation & testing suite

🔧 Technical Stack

  • Framework: Hono (ultra-fast web framework)
  • Runtime: Node.js 18+ with TypeScript
  • MCP SDK: @modelcontextprotocol/sdk
  • Web Scraping: Playwright + Cheerio
  • Document Processing: PDF.js, mammoth (DOCX), fs (TXT)
  • Database: ExcelJS for local Excel file management
  • Validation: Zod schemas with type safety
  • Containerization: Docker + Docker Compose
  • Vision Processing: Claude's native capabilities (no external APIs needed)

🛡️ Security & Production Features

  • Multi-stage Docker builds with security best practices
  • File validation and path traversal protection
  • Resource limits and health checks
  • Comprehensive error handling and logging
  • Type-safe operations throughout
  • No external API dependencies for core functionality

📊 Performance & Monitoring

  • Tool response time: < 5 seconds for web scraping
  • Document processing: < 3 seconds for small files, < 10 seconds for large files
  • Excel operations: < 1 second for database queries
  • Memory usage: < 512MB base, < 1GB with browsers
  • Health check endpoints and comprehensive logging

🆘 Support & Troubleshooting

  • Quick Test: Run ./scripts/test-connection.sh
  • Logs: tail -f ~/Library/Logs/Claude/mcp-server-content-analyzer.log
  • Health Check: curl http://localhost:3000/health (if using Hono)
  • Documentation: See COMPLETE-GUIDE.md for comprehensive testing

✅ Success Criteria

Your system is working correctly if:

  • ✅ All system tools respond (test_connection, get_server_info)
  • ✅ Web scraping works with real URLs
  • ✅ Document processing handles PDF, DOCX, TXT files
  • ✅ Claude vision integration processes screenshots
  • ✅ Excel database saves and retrieves content
  • ✅ Complete workflows execute end-to-end

Ready for production use! 🚀

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选