MCP Context Provider
Provides persistent tool context that survives across Claude Desktop chat sessions, automatically injecting tool-specific rules, syntax preferences, and best practices. Eliminates the need to re-establish context in each new conversation.
README
MCP Context Provider
<div align="center"> <img src="assets/MCP-CONTEXT-PROVIDER.png" alt="MCP Context Provider Architecture" width="600"/>
The stable, glowing orb at the center represents the persistent context that survives across chat sessions. The flowing data streams show how ongoing conversations connect to and draw from this stable core of information, preventing context loss. </div>
A static MCP (Model Context Protocol) server that provides AI models with persistent tool context, preventing context loss between chat sessions. This server automatically loads and injects tool-specific rules, syntax preferences, and best practices at Claude Desktop startup.
Overview
The Context Provider acts as a persistent neural core for your AI interactions, eliminating the need to re-establish context in each new chat session by:
- 🔄 Persistent Context: Like the stable orb in the visualization, rules and preferences survive across Claude Desktop restarts
- ⚡ Automatic Injection: Context flows seamlessly into every conversation, just as the data streams connect to the central core
- 🎯 Tool-Specific: Each tool gets its own context rules and syntax preferences, creating specialized knowledge pathways
- 🔧 Auto-Corrections: Automatic syntax transformations (e.g., Markdown → DokuWiki) ensure consistency across all interactions
- 📈 Scalable: Easy to add new tools and context rules, expanding the knowledge network
- 🏢 Enterprise-Ready: Version-controlled context management provides organizational stability
The Neural Network Metaphor
Just like the image depicts, your MCP Context Provider functions as:
- Central Orb: The stable, persistent context core that maintains consistency
- Neural Pathways: Tool-specific context rules that create specialized knowledge channels
- Data Streams: Individual chat sessions that flow through and benefit from the persistent context
- Network Stability: Prevents the ephemeral nature of conversations from losing important contextual information
Quick Start
Option 1: Automated Installation (Recommended)
The easiest way to install MCP Context Provider is using the provided installation scripts:
Unix/Linux/macOS:
# Download the DXT package
wget https://github.com/doobidoo/MCP-Context-Provider/raw/main/mcp-context-provider-1.1.0.dxt
# Run the installation script
curl -sSL https://raw.githubusercontent.com/doobidoo/MCP-Context-Provider/main/install.sh | bash
Windows:
# Download and run the Windows installer
Invoke-WebRequest -Uri "https://raw.githubusercontent.com/doobidoo/MCP-Context-Provider/main/install.bat" -OutFile "install.bat"
.\install.bat
The installation script automatically:
- Unpacks the DXT extension
- Creates a Python virtual environment
- Installs all required dependencies
- Configures Claude Desktop settings
Option 2: Manual Installation from DXT
# Install DXT CLI (if not already installed)
npm install -g @anthropic-ai/dxt
# Download the DXT package
wget https://github.com/doobidoo/MCP-Context-Provider/raw/main/mcp-context-provider-1.1.0.dxt
# Unpack the extension to your desired location
dxt unpack mcp-context-provider-1.1.0.dxt ~/mcp-context-provider
# Navigate to the installation directory
cd ~/mcp-context-provider
# Create and activate a Python virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install mcp>=1.9.4
Option 3: Installation from Source
# Clone the repository
git clone https://github.com/doobidoo/MCP-Context-Provider.git
cd MCP-Context-Provider
# Create and activate a Python virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
2. Configuration
Update your Claude Desktop configuration file:
Configuration File Location:
- Linux/Mac:
~/.config/claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
For Virtual Environment Installation (Recommended):
{
"mcpServers": {
"context-provider": {
"command": "/path/to/mcp-context-provider/venv/bin/python",
"args": ["/path/to/mcp-context-provider/context_provider_server.py"],
"env": {
"CONTEXT_CONFIG_DIR": "/path/to/mcp-context-provider/contexts",
"AUTO_LOAD_CONTEXTS": "true"
}
}
}
}
For System Python Installation:
{
"mcpServers": {
"context-provider": {
"command": "python",
"args": ["context_provider_server.py"],
"cwd": "/path/to/MCP-Context-Provider",
"env": {
"CONTEXT_CONFIG_DIR": "./contexts",
"AUTO_LOAD_CONTEXTS": "true"
}
}
}
}
Important: Replace /path/to/mcp-context-provider with the actual installation path.
3. Verify Installation
Run the verification script to ensure everything is configured correctly:
python verify_install.py
4. Restart Claude Desktop
After updating the configuration, restart Claude Desktop to load the MCP server.
How It Works
Architecture
- Context Provider Server: Python MCP server that loads JSON context files
- Context Files: Tool-specific rules stored in
/contextsdirectory - Claude Desktop Integration: MCP server registered in configuration
- Automatic Loading: Context is injected at startup and persists across chats
Context Flow
Startup → Load Context Files → Register MCP Tools → Context Available in All Chats
Available Tools
Once loaded, the following tools are available in all chat sessions:
get_tool_context: Get context rules for specific toolget_syntax_rules: Get syntax conversion ruleslist_available_contexts: List all loaded context categoriesapply_auto_corrections: Apply automatic syntax corrections
<div align="center"> <img src="assets/Get-tool-specific-context-rules.png" alt="MCP Context Provider Tools in Action" width="800"/>
Screenshot showing the MCP Context Provider in action within Claude Desktop. The tool automatically detects and lists all available context categories (dokuwiki, terraform, azure, git, general_preferences) and provides interactive access to tool-specific rules and guidelines. </div>
Context Files
The server loads context files from the /contexts directory:
dokuwiki_context.json: DokuWiki syntax rules and preferencesterraform_context.json: Terraform naming conventions and best practicesazure_context.json: Azure resource naming and compliance rulesgit_context.json: Git commit conventions and workflow patternsgeneral_preferences.json: Cross-tool preferences and standards
Context File Structure
Each context file follows this pattern:
{
"tool_category": "toolname",
"description": "Tool-specific context rules",
"auto_convert": true,
"syntax_rules": {
"format_rules": "conversion patterns"
},
"preferences": {
"user_preferences": "settings"
},
"auto_corrections": {
"regex_patterns": "automatic fixes"
},
"metadata": {
"version": "1.0.0",
"applies_to_tools": ["tool:*"]
}
}
Examples
DokuWiki Syntax Conversion
Input (Markdown):
# My Header
This is `inline code` and here's a [link](http://example.com).
Auto-converted to DokuWiki:
====== My Header ======
This is ''inline code'' and here's a [[http://example.com|link]].
Azure Resource Naming
Input: storage_account_logs_prod
Auto-corrected to: stlogsprod (following Azure naming conventions)
Git Commit Messages
Input: Fixed the login bug
Auto-corrected to: fix: resolve login authentication issue
Adding New Context
To add support for a new tool:
- Create a new JSON file:
contexts/{toolname}_context.json - Follow the standard context structure
- Restart Claude Desktop to load the new context
The server automatically detects and loads any *_context.json files in the contexts directory.
Benefits
For Developers
- No need to re-establish context in new chats
- Automatic syntax corrections save time
- Consistent formatting across all work
- Best practices automatically applied
For Teams
- Shared context rules across team members
- Version-controlled standards
- Consistent code and documentation formatting
- Enterprise compliance automatically enforced
For Organizations
- Centralized context management
- Scalable across multiple tools
- Audit trail of context changes
- Easy deployment and updates
Advanced Usage
Custom Context Rules
Create your own context files by following the established pattern. The server supports:
- Regex-based auto-corrections
- Tool-specific preferences
- Conditional formatting rules
- Multi-tool context inheritance
Environment-Specific Context
Use environment variables to load different context sets:
{
"env": {
"CONTEXT_CONFIG_DIR": "./contexts/production",
"ENVIRONMENT": "prod"
}
}
Troubleshooting
Common Issues
- Context not loading: Check file path in Claude Desktop config
- Server not starting: Verify Python dependencies installed
- Rules not applying: Check JSON syntax in context files
See TROUBLESHOOTING.md for detailed solutions.
Documentation
- Context Guide: Complete context file reference
- Developer Guide: Creating custom contexts
- Examples: Real-world usage examples
- Troubleshooting: Common issues and solutions
DXT Package Distribution
The MCP Context Provider is available as a Desktop Extension (DXT) package for easy distribution and installation:
- Package:
mcp-context-provider-1.0.0.dxt(18.6 MB) - Contents: Complete server with all dependencies bundled
- Platform: Windows, macOS, Linux with Python 3.8+
- Dependencies: Self-contained (no external pip requirements)
Building DXT Package
To build your own DXT package from source:
# Install DXT CLI
npm install -g @anthropic-ai/dxt
# Build the package
cd dxt
dxt pack
# The package will be created as mcp-context-provider-1.0.0.dxt
Distribution Notes
- The DXT package includes all Python dependencies (MCP SDK, Pydantic, etc.)
- Total unpacked size: ~45 MB including all dependencies
- Optimized for offline installation and deployment
- Compatible with corporate environments and air-gapped systems
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/new-context - Add your context file to
/contexts - Test with your Claude Desktop setup
- Submit a pull request
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。