
MCP-Creator-MCP
A meta-MCP server that helps users create new MCP servers through AI guidance, templates, and streamlined workflows, transforming ideas into production-ready implementations with minimal effort.
README
MCP-Creator-MCP 🚀
A meta-MCP server that democratizes MCP server creation through AI-guided workflows and intelligent templates.
Transform vague ideas into production-ready MCP servers with minimal cognitive overhead and maximum structural elegance.
🎯 Vision
Creating MCP servers should be as simple as describing what you want. MCP Creator bridges the gap between idea and implementation, providing intelligent guidance, proven templates, and streamlined workflows.
✨ Core Features
- 🤖 AI-Guided Creation: Get intelligent suggestions and best practices tailored to your use case
- 📚 Template Library: Curated collection of proven MCP server patterns
- 🔄 Workflow Engine: Save and reuse creation workflows for consistent results
- 🎨 Gradio Interface: User-friendly web interface for visual server management
- 🔧 Multi-Language Support: Python, Gradio, and expanding language ecosystem
- 📊 Built-in Monitoring: Server health checks and operational visibility
- 🛡️ Best Practices: Automated validation and security recommendations
🚀 Quick Start
Prerequisites
- Python 3.10 or higher
- uv package manager
- Claude Desktop (for MCP integration)
Installation
# Clone and set up the project
git clone https://github.com/angrysky56/mcp-creator-mcp.git
cd mcp-creator-mcp
# Create and activate virtual environment
uv venv --python 3.12 --seed
source .venv/bin/activate
# Install dependencies
uv add -e .
# Configure environment
cp .env.example .env
# Edit .env with your API keys (see Configuration section)
Basic Usage
Option 1: As an MCP Server (Recommended)
-
Configure Claude Desktop:
# Copy the example config cp example_mcp_config.json ~/path/to/claude_desktop_config.json # Edit paths and API keys as needed
-
Start using in Claude Desktop:
- Restart Claude Desktop
- Use tools like
create_mcp_server
,list_templates
,get_ai_guidance
Option 2: Standalone Interface
# Launch the Gradio interface
uv run gradio_interface.py
# Or use the CLI
uv run mcp-creator-gui
📖 Configuration
Environment Variables
Create a .env
file with your settings:
# AI Model Providers (at least one required for AI guidance)
ANTHROPIC_API_KEY=your_anthropic_key_here
OPENAI_API_KEY=your_openai_key_here
OLLAMA_BASE_URL=http://localhost:11434
# MCP Creator Settings
DEFAULT_OUTPUT_DIR=./mcp_servers
LOG_LEVEL=INFO
# Gradio Interface
GRADIO_SERVER_PORT=7860
GRADIO_SHARE=false
Claude Desktop Integration
- Edit your Claude Desktop config (usually at
~/.config/Claude/claude_desktop_config.json
):
{
"mcpServers": {
"mcp-creator": {
"command": "uv",
"args": [
"--directory",
"/path/to/mcp-creator-mcp",
"run",
"python",
"main.py"
],
"env": {
"ANTHROPIC_API_KEY": "your_key_here"
}
}
}
}
- Restart Claude Desktop
🛠️ Usage Examples
Creating Your First MCP Server
# In Claude Desktop, ask:
"Create an MCP server called 'weather_helper' that provides weather data and forecasts"
# Or use the tool directly:
create_mcp_server(
name="weather_helper",
description="Provides weather data and forecasts",
language="python",
template_type="basic",
features=["tools", "resources"]
)
Getting AI Guidance
# Ask for specific guidance:
get_ai_guidance(
topic="security",
server_type="database"
)
# Or access guidance resources:
# Use resource: mcp-creator://guidance/sampling
Managing Templates
# List available templates
list_templates()
# Filter by language
list_templates(language="python")
🏗️ Architecture
Core Principles
- Simplicity: Each component has a single, clear responsibility
- Predictability: Consistent patterns reduce cognitive load
- Extensibility: Modular design enables easy customization
- Reliability: Comprehensive error handling and graceful degradation
Component Overview
├── src/mcp_creator/
│ ├── core/ # Core server functionality
│ │ ├── config.py # Clean configuration management
│ │ ├── template_manager.py # Template system
│ │ └── server_generator.py # Server creation engine
│ ├── workflows/ # Workflow management
│ ├── ai_guidance/ # AI assistance system
│ └── utils/ # Shared utilities
├── templates/ # Template library
├── ai_guidance/ # Guidance content
└── mcp_servers/ # Generated servers (default)
📚 Template System
Available Templates
- Python Basic: Clean, well-structured foundation
- Python with Resources: Database and API integration patterns
- Python with Sampling: AI-enhanced server capabilities
- Gradio Interface: Interactive UI with MCP integration
Creating Custom Templates
Templates use Jinja2 with clean abstractions:
# Template structure
templates/languages/{language}/{template_name}/
├── metadata.json # Template configuration
├── template.py.j2 # Main template file
└── README.md.j2 # Documentation template
🔄 Workflow System
Saving Workflows
save_workflow(
name="Database MCP Server",
description="Complete database integration workflow",
steps=[
{
"id": "collect_requirements",
"type": "input",
"config": {"fields": ["db_type", "connection_string"]}
},
{
"id": "security_review",
"type": "ai_guidance",
"config": {"topic": "database_security"}
},
{
"id": "generate_server",
"type": "generation",
"config": {"template": "python:database"}
}
]
)
🔧 Development
Project Structure
The codebase follows clean architecture principles:
- Separation of Concerns: Each module has a single responsibility
- Dependency Injection: Components are loosely coupled
- Error Boundaries: Graceful failure handling throughout
- Type Safety: Comprehensive type hints and validation
Adding New Templates
- Create template directory:
templates/languages/{lang}/{name}/
- Add
metadata.json
with template configuration - Create
template.{ext}.j2
with Jinja2 template - Test with the template manager
Contributing
- Fork the repository
- Create a feature branch with descriptive name
- Follow the existing code patterns and style
- Add tests for new functionality
- Submit a pull request with clear description
🛡️ Security & Best Practices
Built-in Protections
- Input Validation: All user inputs are validated and sanitized
- Process Management: Proper cleanup prevents resource leaks
- Error Handling: Graceful failure with helpful messages
- Logging: Comprehensive operational visibility
Recommended Practices
- Use environment variables for sensitive data
- Implement rate limiting for production deployments
- Regular security audits of generated servers
- Monitor server performance and resource usage
🐛 Troubleshooting
Common Issues
Server won't start:
# Check dependencies
uv add -e .
# Verify configuration
cat .env
# Check logs
tail -f logs/mcp-creator.log
Claude Desktop integration:
# Verify config file syntax
python -m json.tool claude_desktop_config.json
# Check server connectivity
python main.py --test
Template errors:
# List available templates
uv run python -c "from src.mcp_creator import TemplateManager; print(TemplateManager().list_templates())"
📊 Monitoring & Operations
Health Checks
The server provides built-in health monitoring:
- Resource usage tracking
- Error rate monitoring
- Performance metrics
- Template validation
Logging
All operations are logged to stderr (MCP compliance):
# View logs in real-time
python main.py 2>&1 | tee mcp-creator.log
🚀 What's Next?
- Multi-language expansion: TypeScript, Go, Rust templates
- Cloud deployment: Integration with major cloud platforms
- Collaboration features: Team workflows and template sharing
- Advanced AI: Enhanced code generation and optimization
- Marketplace: Community template and workflow ecosystem
📝 License
MIT License - see LICENSE for details.
🤝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
💬 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Wiki
Built with ❤️ for the MCP community
MCP Creator makes sophisticated AI integrations accessible to everyone, from hobbyists to enterprise teams.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。