MCP Crypto Data Server

MCP Crypto Data Server

Provides real-time and historical cryptocurrency market data from multiple exchanges (Binance, Kraken, Coinbase Pro) with Redis caching and rate limiting support.

Category
访问服务器

README

Project-1

MCP server

MCP Crypto Data Server - Deployment Guide

Local Development

Prerequisites

  • Python 3.11+
  • Git
  • Docker & Docker Compose (optional)

Setup

  1. Clone and setup

    git clone <repository>
    cd mcp-crypto-data-server
    python3.11 -m venv venv
    source venv/bin/activate
    pip install -e ".[dev]"
    
  2. Configure environment

    cp .env.example .env
    # Edit .env with your settings
    
  3. Run server

    python -m uvicorn app.main:app --reload
    
  4. Run tests

    pytest
    pytest --cov=app --cov-report=html
    

Docker Deployment

Using Docker Compose (Recommended for Development)

cd docker
docker-compose up --build

This starts:

  • Redis cache on port 6379
  • FastAPI server on port 8000

Using Docker Directly

# Build image
docker build -f docker/Dockerfile -t mcp-server:latest .

# Run container
docker run -p 8000:8000 \
  -e REDIS_URL=redis://host.docker.internal:6379/0 \
  -e ENABLED_EXCHANGES=binance,kraken,coinbasepro \
  mcp-server:latest

Production Deployment

Environment Variables

See .env.example for all available settings. Key production settings:

  • APP_ENV=production
  • LOG_LEVEL=INFO
  • REDIS_ENABLED=true
  • REDIS_URL=redis://redis-host:6379/0
  • CMC_API_KEY=your_api_key

Kubernetes Deployment

Example deployment manifest:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mcp-server
spec:
  replicas: 3
  selector:
    matchLabels:
      app: mcp-server
  template:
    metadata:
      labels:
        app: mcp-server
    spec:
      containers:
      - name: mcp-server
        image: mcp-server:latest
        ports:
        - containerPort: 8000
        env:
        - name: APP_ENV
          value: "production"
        - name: REDIS_URL
          value: "redis://redis-service:6379/0"
        livenessProbe:
          httpGet:
            path: /v1/health
            port: 8000
          initialDelaySeconds: 10
          periodSeconds: 30
        readinessProbe:
          httpGet:
            path: /v1/health
            port: 8000
          initialDelaySeconds: 5
          periodSeconds: 10

Monitoring

Health Check

curl http://localhost:8000/v1/health

Response:

{
  "status": "ok",
  "uptime": 123.45,
  "version": "0.1.0"
}

Logs

View logs:

# Docker Compose
docker-compose logs -f app

# Docker
docker logs -f <container-id>

# Kubernetes
kubectl logs -f deployment/mcp-server

Performance Tuning

Redis Configuration

  • Use Redis cluster for high availability
  • Configure maxmemory policy: allkeys-lru
  • Enable persistence: appendonly yes

Rate Limiting

  • Adjust RATE_LIMIT_REQUESTS based on API key limits
  • Monitor rate limit errors in logs
  • Increase INITIAL_BACKOFF if hitting limits frequently

Caching

  • Increase TTLs for stable data (OHLCV)
  • Decrease TTLs for volatile data (ticker)
  • Monitor cache hit rates

Server

Use multiple worker processes with Gunicorn:

gunicorn -w 4 -k uvicorn.workers.UvicornWorker app.main:app

Worker count formula: workers = 2 * cpu_count + 1

Troubleshooting

Redis Connection Issues

# Check Redis connectivity
redis-cli -h redis-host ping

# Monitor Redis
redis-cli MONITOR

Rate Limit Errors

  • Check exchange API key limits
  • Verify RATE_LIMIT_REQUESTS configuration
  • Review logs for rate limit patterns

High Memory Usage

  • Check Redis memory: redis-cli INFO memory
  • Reduce cache TTLs
  • Monitor active connections

Slow Responses

  • Check exchange API latency
  • Monitor Redis performance
  • Review application logs for errors

Backup & Recovery

Redis Backup

# Create snapshot
redis-cli BGSAVE

# Copy dump.rdb to backup location
cp /var/lib/redis/dump.rdb /backup/redis-$(date +%Y%m%d).rdb

Application Backup

# Backup configuration
cp .env /backup/.env.$(date +%Y%m%d)

# Backup logs
tar -czf /backup/logs-$(date +%Y%m%d).tar.gz logs/

Scaling

Horizontal Scaling

  • Deploy multiple server instances behind load balancer
  • Use shared Redis for cache
  • Configure sticky sessions if needed

Vertical Scaling

  • Increase server resources (CPU, memory)
  • Optimize database queries
  • Tune connection pools

Security

API Security

  • Use HTTPS in production
  • Implement rate limiting per IP
  • Add authentication if needed

Secrets Management

  • Never commit .env files
  • Use environment variables
  • Rotate API keys regularly

Network Security

  • Use VPC/private networks
  • Restrict Redis access
  • Enable firewall rules

CI/CD Integration

GitHub Actions workflow included (.github/workflows/ci.yml):

  • Runs linting (ruff)
  • Runs tests (pytest)
  • Builds Docker image
  • Reports coverage

Trigger deployment on successful CI:

- name: Deploy to Production
  if: github.ref == 'refs/heads/main' && success()
  run: |
    # Deploy commands here

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选