MCP Data Server
Indexes local files (PDF, TXT, CSV, Markdown) with embeddings for semantic search. Provides both CLI and MCP server interfaces so Claude Desktop can search and read your local documents.
README
MCP Data Server — Local file search you can call from Claude (or CLI)
MCP Data Server indexes files on your machine (PDF, TXT, CSV, Markdown, etc.) and lets you search them with embeddings. You can use it from:
- a friendly CLI (
ls,index,search) - an MCP server over stdio (so Claude Desktop/Cursor can call your tools)
Works great on Windows 11. Also tested on macOS/Linux (see notes).
Table of contents
- Features
- Prerequisites
- Quick start (Windows)
- Quick start (macOS/Linux)
- Usage (CLI)
- Use with Claude Desktop (MCP)
- Configuration
- Project structure
- Development (lint, type, test)
- Troubleshooting
- Contributing
- License
Features
- 🔎 Local search with SentenceTransformers embeddings (cosine similarity)
- ⚡ Optional FAISS index for fast Top-K search
- 🧰 Simple CLI:
ls,index,search - 🔌 MCP server so Claude Desktop can call tools:
list_docs_tool,index_docs_tool,search_chunks_tool,read_doc_tool - 🧩 Extensible loaders/chunkers; add new formats easily
- ✅ Batteries-included dev setup: Ruff, Black, MyPy, PyTest, pre-commit
Prerequisites
- Python 3.11+ (3.11 recommended)
- Windows 11 (PowerShell) macOS/Linux are fine too (bash)
- ~3 GB free disk space on first run (model cache)
- (Optional) FAISS CPU wheels installed automatically via
faiss-cpu
Quick start (Windows)
Folder in this repo where you put files to index:
./data/
# 1) Clone and enter project
git clone https://github.com/hkonda015/McpServer.git
Set-Location .\McpServer\McpServer
# 2) Create & activate venv (PowerShell)
python -m venv .venv
.\.venv\Scripts\Activate.ps1
# 3) Install runtime (or dev) dependencies
pip install -r requirements.txt
# or for contributors:
pip install -r requirements-dev.txt
# 4) (Optional) pre-commit hooks
pre-commit install
# 5) Put a few files in .\data\ (txt/pdf/csv/md), then:
python -m mcp_data_server ls
python -m mcp_data_server index
python -m mcp_data_server search "your query" --k 5
## Usage (CLI)
The CLI lets you **list files**, **build/rebuild the index**, and **search** your local documents.
> **Prereq:** open a terminal at your repo root and activate the venv
> Windows (PowerShell):
> ```powershell
> Set-Location .\McpServer
> .\.venv\Scripts\Activate.ps1
> ```
> macOS/Linux (bash):
> ```bash
> cd McpServer
> source .venv/bin/activate
> ```
---
### 1) List files (`ls`)
Lists all **supported documents** under `DATA_DIR` (defaults to `./data`).
```powershell
python -m mcp_data_server ls
# Contributing to MCP Data Server
Thanks for your interest in contributing! This document explains how to set up your dev environment, the coding standards we use, how to run tests, and how to submit a good pull request.
---
## Ways to contribute
- **Bug reports**: include steps to reproduce, expected vs actual behavior, OS, Python version, and logs.
- **Feature requests**: explain the use case, not just the solution. Sketch CLI and/or MCP tool UX if relevant.
- **Documentation**: improve READMEs, examples, and comments.
- **Code**: bug fixes, new loaders, chunking strategies, performance improvements, tests.
Good first issues will be labeled **good first issue** and **help wanted**.
---
## Development setup
### Prerequisites
- Python **3.11+** (we recommend 3.11)
- Git
- ~3 GB free disk space for model cache on first run
### Clone and create a virtual environment
#### Windows (PowerShell)
```powershell
git clone https://github.com/hkonda015/McpServer.git
Set-Location .\McpServer\McpServer
python -m venv .venv
.\.venv\Scripts\Activate.ps1
pip install -r requirements-dev.txt
pre-commit install
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。