
MCP Docker Sandbox Interpreter
A secure Docker-based environment that allows AI assistants to safely execute code without direct access to the host system by running all code within isolated containers.
README
MCP Docker Sandbox Interpreter
A secure Docker-based code execution environment for the Model Context Protocol (MCP).
Overview
This project provides a secure sandbox for executing code through MCP (Model Context Protocol). It allows AI assistants to safely run code without requiring direct access to the host system, by executing all code within isolated Docker containers.
graph LR
A[Claude/Cursor] -->|Sends Code| B[MCP Server]
B -->|Executes Code| C[Docker Sandbox]
C -->|Returns Results| A
Features
- Secure Execution: Code runs in isolated Docker containers with strict security limitations
- Multi-Language Support: Currently supports Python with easy extensibility for other languages
- Resource Limitations: CPU and memory restrictions to prevent abuse
- MCP Integration: Fully compatible with the Model Context Protocol
- Automatic Setup: Handles container creation, dependency installation, and cleanup
Requirements
- Docker (Desktop or Engine)
- Python 3.10+
- MCP SDK (
pip install mcp
) - Docker Python SDK (
pip install docker
)
Installation
-
Clone this repository:
git clone https://github.com/yourusername/mcp-docker-interpreter.git cd mcp-docker-interpreter
-
Create and activate a virtual environment:
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
Usage
Starting the MCP Server
Start the server by running:
# For Colima users:
export DOCKER_HOST="unix:///Users/username/.colima/default/docker.sock"
# Run the server
uv run mcp dev main.py
Connecting to an AI Assistant
You can connect this MCP server to AI assistants that support the Model Context Protocol:
Cursor
In Cursor, add the following to your MCP settings:
{
"mcpServers": {
"docker-sandbox": {
"command": "python",
"args": ["/absolute/path/to/your/main.py"],
"env": {
"DOCKER_HOST": "unix:///path/to/your/docker.sock"
}
}
}
}
Replace the paths with your actual file paths.
Claude Desktop
Similar to Cursor, add the configuration to Claude Desktop's MCP settings.
MCP Tools
This MCP server exposes three main tools:
-
initialize_sandbox: Creates a new Docker container for code execution
Arguments: - image: The Docker image to use (default: "alpine:latest")
-
execute_code: Runs code in the initialized sandbox
Arguments: - code: The code string to execute - language: Programming language (default: "python")
-
stop_sandbox: Stops and removes the container
No arguments needed
How It Works
-
When
initialize_sandbox
is called, the system:- Creates a Docker container based on Alpine Linux
- Installs Python and other dependencies
- Sets up security restrictions
-
When
execute_code
is called:- Code is executed within the isolated container
- Standard output and errors are captured
- Results are returned to the calling application
-
When
stop_sandbox
is called:- The container is stopped and removed
- All resources are released
Security Considerations
This sandbox implements several security measures:
- Containers have restricted CPU and memory usage
- Containers are run with minimal privileges
- Network access is disabled by default
- Containers are disposable and cleaned up after use
Development
Project Structure
mcp-docker-interpreter/
├── main.py # Main implementation of MCP server and Docker sandbox
├── requirements.txt # Project dependencies
└── README.md # This file
Adding New Language Support
To add support for a new programming language, modify the run_code
method in the DockerSandbox
class to handle the new language.
Troubleshooting
Common Issues
-
Docker connection error:
- Ensure Docker is running
- Check that the DOCKER_HOST environment variable is correctly set for your Docker installation
-
Container creation fails:
- Verify you have permission to create Docker containers
- Ensure the specified base image is accessible
-
Code execution fails:
- Check that the language runtime is properly installed in the container
- Verify the code is valid for the specified language
License
Acknowledgements
- This project uses the Model Context Protocol
- Built with Docker SDK for Python
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。