MCP Dockerized Server
A minimal, containerized MCP server that exposes a Streamable HTTP transport with API key authentication, allowing secure access to MCP endpoints.
README
MCP Dockerized Server
This repository provides a minimal MCP server based on [fastmcp]. The server exposes the Streamable HTTP transport and protects all requests using a simple API key.
Usage
Build and run with Docker
docker build -t mcp-server .
docker run -p 8000:8000 -v mcp_data:/data mcp-server
The container stores API keys in /data/api_keys.db. Mount a volume to
persist keys across restarts.
Generate API keys
Use the management CLI inside the container to create keys:
docker run --rm -v mcp_data:/data mcp-server python manage.py generate-key
Generated keys are written to /data/api_keys.db inside the container or the mounted volume.
You can confirm the file exists by listing it with a one-off container:
docker run --rm -v mcp_data:/data mcp-server ls -l /data/api_keys.db
The printed key can then be supplied via the X-API-Key header or
api_key query parameter when calling the server.
Endpoints
The server exposes two simple HTTP endpoints:
| Path | Method | Description |
|---|---|---|
/mcp |
POST |
Streamable HTTP transport for MCP requests. Requires a valid API key. |
/generate-key |
POST |
Generates a new API key. Requires an existing valid API key. |
Interactive API documentation is available at /docs (also accessible via /doc) with the raw schema at /openapi.json.
Example requests
Generate a key via HTTP
curl -X POST http://localhost:8000/generate-key \
-H "X-API-Key: <your-api-key>"
Call the MCP endpoint
You can issue JSON-RPC requests directly. The example below sends a ping request:
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-H "X-API-Key: <your-api-key>" \
-d '{"jsonrpc": "2.0", "id": 1, "method": "ping"}'
Call a tool via HTTP
Tools are invoked using the tools/call method. Provide the tool name and any
arguments in the JSON-RPC payload. The example below runs the built-in
terminal tool:
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-H "X-API-Key: <your-api-key>" \
-d '{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "terminal", "arguments": {"cmd": "echo hello"}}}'
For more advanced interaction you can use the fastmcp Python client:
import asyncio
from fastmcp.client import Client, StreamableHttpTransport
async def main():
transport = StreamableHttpTransport(
"http://localhost:8000/mcp",
headers={"X-API-Key": "<your-api-key>"},
)
async with Client(transport) as client:
tools = await client.list_tools()
print(tools)
result = await client.call_tool("terminal", {"cmd": "echo hello"})
print(result[0].text)
asyncio.run(main())
Plugins
Additional tools and resources can be added by placing modules in the
plugins package. Each module should expose a setup(server) function
which receives the FastMCP instance and registers tools or resources.
All modules in this package are automatically imported on startup.
This repository ships with a terminal plugin providing a simple tool
for running commands on the host system.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。