MCP Docs Server
Makes local markdown documentation files automatically available to AI assistants through MCP, enabling them to search and read organized documentation folders without manual file registration.
README
MCP Docs Server
A simple way to make your documentation files available to AI assistants like Claude.
What Does This Do?
Think of this as a library catalog for your documentation. You have a bunch of markdown files (.md files) with documentation, guides, or notes. This server:
- Finds all your markdown files automatically
- Makes them available to AI tools through something called MCP (Model Context Protocol)
- Lets AI assistants search through and read your documentation
It's like giving Claude or other AI tools a filing cabinet of your documentation that they can open and read whenever they need information.
How It Works (Simple Explanation)
- You put documentation files in folders - Just save your
.mdfiles in organized folders - The server finds them automatically - No need to manually register each file
- AI can read them - AI assistants can now access and search your documentation
Real Example
Let's say you have documentation for "Service 1" with these files:
user-functions.md- How user features workcall-functions.md- How calling features workcalendar-functions.md- How calendar features work
You would organize them like this:
docs/
└── service-1/
├── user-functions.md
├── call-functions.md
└── calendar-functions.md
That's it! The server will automatically find these files and make them available as:
docs://service-1/user-functionsdocs://service-1/call-functionsdocs://service-1/calendar-functions
Quick Start (Step by Step)
Step 1: Install Python Requirements
You need Python 3.10 or newer and uv (a Python package manager) installed.
Install uv if you don't have it:
curl -LsSf https://astral.sh/uv/install.sh | sh
Then install the required package:
uv pip install mcp
Step 2: Add Your Documentation Files
Put your markdown files in the docs/ folder. Organize them in subfolders by topic or service:
docs/
├── service-1/
│ ├── user-functions.md
│ ├── call-functions.md
│ └── calendar-functions.md
├── service-2/
│ └── api-guide.md
└── getting-started/
└── introduction.md
The subfolder name (like service-1) becomes the category.
Step 3: Connect to Claude Code
The easiest way is to use the Claude Code CLI. From this project folder, run:
claude mcp add --transport stdio docs -- uv run python /full/path/to/mcp-example/src/mcp_docs_server.py
Replace /full/path/to/mcp-example with your actual project path.
Verify it's connected:
claude mcp list
You should see: docs: ... - ✓ Connected
That's it! Claude Code can now access your documentation.
Adding New Documentation
To add new documentation at any time:
- Create a new
.mdfile in the appropriate folder underdocs/ - That's it! The server finds new files automatically
For example, to add documentation for a new service:
docs/
└── service-3/ # Create new folder
└── setup.md # Add your documentation file
No need to restart the server or change any code.
Using with Claude Code
If you're using Claude Code (the CLI tool), follow Step 3 above. The server is already configured and running!
You can now ask Claude Code questions like:
- "List all available docs resources"
- "Read the service-1/user-functions documentation"
- "Search the docs for authentication"
Claude Code will automatically access your documentation files.
Managing the Server
Check if the server is connected:
claude mcp list
Remove the server:
claude mcp remove docs
Re-add the server if needed:
claude mcp add --transport stdio docs -- uv run python /full/path/to/mcp-example/src/mcp_docs_server.py
Connecting to Claude Desktop
To make your documentation available in Claude Desktop:
-
Find your Claude Desktop config file:
- Mac:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%/Claude/claude_desktop_config.json
- Mac:
-
Open the file and add this (replace
/path/to/mcp-examplewith your actual folder path):
{
"mcpServers": {
"docs": {
"command": "python",
"args": ["/path/to/mcp-example/src/mcp_docs_server.py"]
}
}
}
Learn More
- MCP Python SDK - Build your own MCP servers
- MCP Documentation - Learn about Model Context Protocol
- MCP Python SDK Docs - Complete SDK reference
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。