MCP Docs Server

MCP Docs Server

Aggregates documentation from multiple sources (llms.txt format or web scraping) and provides semantic search capabilities using vector embeddings and hybrid search for each documentation source.

Category
访问服务器

README

MCP Docs Server

A Model Context Protocol (MCP) server that aggregates documentation from multiple sources and provides semantic search capabilities using vector embeddings.

Features

  • Multiple source types: Support for llms.txt format and web scraping via Firecrawl
  • Semantic search: Hybrid search combining vector embeddings and FTS5 keyword search
  • Per-source tools: Each documentation source gets its own search_<name>_docs tool for easy discovery
  • Simple CLI: Add, remove, and manage documentation sources

Tech Stack

  • Runtime: Bun
  • MCP SDK: @modelcontextprotocol/sdk (stdio transport)
  • Database: LibSQL with vector embeddings and FTS5
  • Embeddings: Vercel AI SDK (configurable providers)
  • Web Scraping: Firecrawl

Setup

1. Install Dependencies

bun install

2. Configure Environment Variables

Create a .env file from the example:

cp .env.example .env

Edit .env and add your API keys:

# Database (optional - defaults to ~/.local/share/mcp-docs/docs.db)
# DATABASE_URL=file:./data/docs.db

# Embeddings (OpenAI)
OPENAI_API_KEY=sk-...

# Firecrawl (for web scraping)
FIRECRAWL_API_KEY=fc-...

3. Add Documentation Sources

# Add a source
bun run cli source add bun bun.sh
bun run cli source add react react.dev
bun run cli source add mylib example.com/docs

The CLI will automatically detect whether to use llms.txt or Firecrawl based on what's available at the URL.

4. Run Ingestion

# Ingest all sources
bun run cli ingest

# Or ingest a specific source
bun run cli ingest --source=bun

5. Configure MCP Client

bun run cli configure

This configures the MCP server in Claude Code. To also configure VSCode:

bun run cli configure --vscode

Usage

MCP Tools

Each documentation source you add creates a dedicated search tool:

  • search_bun_docs - Search Bun documentation
  • search_react_docs - Search React documentation
  • search_mylib_docs - Search your custom docs

Each tool accepts:

  • query (required): Search query
  • limit (optional): Number of results (default: 5)

Results are returned as markdown with title, path, URL, and relevant content.

CLI Commands

# Source management
bun run cli source add <name> <url>    # Add a new source
bun run cli source remove <name>        # Remove a source
bun run cli source list                 # List all sources

# Ingestion
bun run cli ingest                      # Ingest all sources
bun run cli ingest --source=<name>      # Ingest specific source
bun run cli ingest --dry-run            # Preview without writing

# Status
bun run cli status                      # Show database stats

# Configuration
bun run cli configure                   # Configure Claude Code / VSCode

Source Auto-Detection

When adding a source, the CLI automatically detects the best method:

  1. URLs ending in llms.txt or llms-full.txt are used directly
  2. Probes {url}/llms.txt - if found, uses llms.txt
  3. Probes docs.{domain}/llms.txt - if found, uses llms.txt
  4. Falls back to Firecrawl web scraping

Source Options

# Firecrawl options
bun run cli source add mysite example.com --crawl-limit=200
bun run cli source add docs example.com/docs --exclude-paths=blog/*,changelog/*

# llms.txt options
bun run cli source add bun bun.sh --include-optional

How It Works

  1. Source Management: Add documentation sources via CLI - stored in SQLite
  2. Ingestion: Fetches documentation from sources (llms.txt or Firecrawl)
  3. Chunking: Splits documents into ~512 token chunks with overlap
  4. Embedding: Generates vector embeddings for each chunk
  5. Indexing: Stores in LibSQL with vector index and FTS5 for hybrid search
  6. Tool Registration: Each source becomes a search_<name>_docs MCP tool
  7. Search: Combines vector similarity and keyword matching via Reciprocal Rank Fusion

Database

The database is stored at ~/.local/share/mcp-docs/docs.db by default (following XDG conventions). Override with DATABASE_URL in .env.

Schema:

  • sources: Documentation sources (name, type, URL, options)
  • documents: Full documents with content hash for deduplication
  • chunks: Document chunks with vector embeddings (1536 dimensions)
  • chunks_fts: FTS5 index for keyword search

Development

# Type check
bun run build

# Run tests
bun test

# Run server directly
bun run src/index.ts

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选