MCP Dummy DB Integration

MCP Dummy DB Integration

A secure Model Context Protocol implementation that enables AI agents to query PostgreSQL databases through predefined tools for employee, project, and issue data. It protects sensitive credentials and prevents arbitrary SQL execution by acting as a controlled connector layer between the LLM and the database.

Category
访问服务器

README

MCP Dummy DB Integration and Data Retrieval POC

Executive Summary

This project demonstrates a secure, production-ready implementation of the Model Context Protocol (MCP) as a connector layer between AI agents and PostgreSQL databases. The solution enables natural language queries without exposing database credentials to the LLM.

Key Achievement: LLM cannot access database directly - only through predefined MCP tools.


Architecture Overview

┌────────────────────────────────────────────────────────┐
│                    USER QUERY                         │
│          "Fetch employees in AI department"           │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         PLANNER AGENT (LLM)                           │
│  ✓ Natural Language Understanding                     │
│  ✗ NO database credentials                            │
│  Output: {"tool": "get_employees_by_department",      │
│           "parameters": {"department": "AI"}}         │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         EXECUTOR AGENT                                 │
│  ✓ Validates tool request                            │
│  ✓ Maps to allowed operations only                   │
│  ✗ Cannot execute arbitrary SQL                      │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         MCP TOOLS LAYER (Sandbox)                     │
│  ✓ get_employees_by_department("AI")                │
│  ✓ get_projects_by_status("Completed")              │
│  ✓ get_issues_by_priority("High")                   │
│  ✗ Cannot run arbitrary SQL                          │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         DATABASE CONNECTION (Secure)                  │
│  ✓ Credentials in environment variables             │
│  ✓ Only parameterized queries (SQL injection safe)  │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         RESULT TO USER                               │
│    [Secure data retrieval via MCP]                   │
└────────────────────────────────────────────────────────┘

Security Features

Feature With MCP
DB Credentials Secure in .env ✅
SQL Access Predefined tools only ✅
Attack Surface Limited operations only ✅
Audit Trail Full logging ✅
Connection Pool Yes ✅

Project Structure

MCP Task/
├── demo_agent_workflow.py  # Main Entry point (Agentic Workflow)
├── main.py                 # Interactive CLI entry point
├── .env                    # Database credentials (not in git)
├── README.md               # This file
├── database/
│   └── db_executor.py     # Database connection & queries
├── mcp/
│   └── tools.py           # MCP tool definitions
├── agents/
│   ├── orchestrator.py    # Manages the Agentic Workflow
│   ├── planner_agent.py   # Query planning agent (w/ Robust Fallback)
│   ├── executor_agent.py  # Query execution agent (Safe validation)
│   ├── reasoner_agent.py  # Result explanation agent
│   └── llm_provider.py    # LLM Interface
├── utils/
│   └── serializer.py      # Custom JSON serialization
└── datas_insert/
    └── sample_data.sql    # Sample database setup (PostgreSQL)

Setup Instructions

Prerequisites

  • Python 3.8+
  • PostgreSQL 12+
  • Ollama (running locally) or other LLM provider
  • pip packages: psycopg2, python-dotenv

Installation

  1. Clone the repository
  2. Create a virtual environment:
    python -m venv venv
    venv\Scripts\activate
    
  3. Install dependencies:
    pip install -r requirements.txt
    
  4. Configure .env:
    DB_HOST=localhost
    DB_PORT=5432
    DB_USER=postgres
    DB_PASSWORD=your_password
    DB_NAME=mcp_db
    
  5. Initialize database:
    psql -U postgres -d mcp_db -f datas_insert/sample_data.sql
    

Running the Demo

python demo_agent_workflow.py

Running the Interactive CLI

python main.py

Agentic Workflow Design

This project uses a multi-agent secure architecture:

  1. Orchestrator: The central brain that manages the lifecycle of a request.
  2. Planner Agent:
    • Role: Analyzes the user query and selects the appropriate MCP tool.
    • Robustness: Uses a Dual-Layer Strategy.
      • Layer 1: Tries to parse the LLM's JSON output.
      • Layer 2: If LLM output is malformed (common with small models), it falls back to a deterministic keyword extraction strategy to ensure the query is always answered correctly.
  3. Executor Agent:
    • Role: Validates the plan and executes the cached tool.
    • Safety: Ensures only allowed tools are called and handles parameter types safely.
  4. MCP Tool Layer: A sandboxed layer that prevents direct SQL access.
  5. Reasoner Agent: (Optional) Summarizes the raw data into a human-readable answer.

How MCP Works as a Connector Layer

  1. User Query → "Fetch employee details where department is AI"
  2. Planner Agent → LLM interprets query, creates plan without DB access
  3. MCP Tools → Translates plan to allowed operations (get_employees_by_department)
  4. Secure Execution → Only predefined MCP tools can access the database
  5. Result → Data returned to user

Security Benefit: The LLM never sees or uses database credentials directly.

MCP Tools Available

  • get_employees_by_department(department) - Fetch employees by department
  • get_projects_by_status(status) - Fetch projects by status
  • get_issues_by_priority(priority) - Fetch issues by priority

Example Queries

  • "Fetch employee details where department is AI"
  • "Show all projects with status completed"
  • "List all high priority issues"

Created by: Muniasamy K

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选