MCP Dummy DB Integration
A secure Model Context Protocol implementation that enables AI agents to query PostgreSQL databases through predefined tools for employee, project, and issue data. It protects sensitive credentials and prevents arbitrary SQL execution by acting as a controlled connector layer between the LLM and the database.
README
MCP Dummy DB Integration and Data Retrieval POC
Executive Summary
This project demonstrates a secure, production-ready implementation of the Model Context Protocol (MCP) as a connector layer between AI agents and PostgreSQL databases. The solution enables natural language queries without exposing database credentials to the LLM.
Key Achievement: LLM cannot access database directly - only through predefined MCP tools.
Architecture Overview
┌────────────────────────────────────────────────────────┐
│ USER QUERY │
│ "Fetch employees in AI department" │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ PLANNER AGENT (LLM) │
│ ✓ Natural Language Understanding │
│ ✗ NO database credentials │
│ Output: {"tool": "get_employees_by_department", │
│ "parameters": {"department": "AI"}} │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ EXECUTOR AGENT │
│ ✓ Validates tool request │
│ ✓ Maps to allowed operations only │
│ ✗ Cannot execute arbitrary SQL │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ MCP TOOLS LAYER (Sandbox) │
│ ✓ get_employees_by_department("AI") │
│ ✓ get_projects_by_status("Completed") │
│ ✓ get_issues_by_priority("High") │
│ ✗ Cannot run arbitrary SQL │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ DATABASE CONNECTION (Secure) │
│ ✓ Credentials in environment variables │
│ ✓ Only parameterized queries (SQL injection safe) │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ RESULT TO USER │
│ [Secure data retrieval via MCP] │
└────────────────────────────────────────────────────────┘
Security Features
| Feature | With MCP |
|---|---|
| DB Credentials | Secure in .env ✅ |
| SQL Access | Predefined tools only ✅ |
| Attack Surface | Limited operations only ✅ |
| Audit Trail | Full logging ✅ |
| Connection Pool | Yes ✅ |
Project Structure
MCP Task/
├── demo_agent_workflow.py # Main Entry point (Agentic Workflow)
├── main.py # Interactive CLI entry point
├── .env # Database credentials (not in git)
├── README.md # This file
├── database/
│ └── db_executor.py # Database connection & queries
├── mcp/
│ └── tools.py # MCP tool definitions
├── agents/
│ ├── orchestrator.py # Manages the Agentic Workflow
│ ├── planner_agent.py # Query planning agent (w/ Robust Fallback)
│ ├── executor_agent.py # Query execution agent (Safe validation)
│ ├── reasoner_agent.py # Result explanation agent
│ └── llm_provider.py # LLM Interface
├── utils/
│ └── serializer.py # Custom JSON serialization
└── datas_insert/
└── sample_data.sql # Sample database setup (PostgreSQL)
Setup Instructions
Prerequisites
- Python 3.8+
- PostgreSQL 12+
- Ollama (running locally) or other LLM provider
- pip packages:
psycopg2,python-dotenv
Installation
- Clone the repository
- Create a virtual environment:
python -m venv venv venv\Scripts\activate - Install dependencies:
pip install -r requirements.txt - Configure
.env:DB_HOST=localhost DB_PORT=5432 DB_USER=postgres DB_PASSWORD=your_password DB_NAME=mcp_db - Initialize database:
psql -U postgres -d mcp_db -f datas_insert/sample_data.sql
Running the Demo
python demo_agent_workflow.py
Running the Interactive CLI
python main.py
Agentic Workflow Design
This project uses a multi-agent secure architecture:
- Orchestrator: The central brain that manages the lifecycle of a request.
- Planner Agent:
- Role: Analyzes the user query and selects the appropriate MCP tool.
- Robustness: Uses a Dual-Layer Strategy.
- Layer 1: Tries to parse the LLM's JSON output.
- Layer 2: If LLM output is malformed (common with small models), it falls back to a deterministic keyword extraction strategy to ensure the query is always answered correctly.
- Executor Agent:
- Role: Validates the plan and executes the cached tool.
- Safety: Ensures only allowed tools are called and handles parameter types safely.
- MCP Tool Layer: A sandboxed layer that prevents direct SQL access.
- Reasoner Agent: (Optional) Summarizes the raw data into a human-readable answer.
How MCP Works as a Connector Layer
- User Query → "Fetch employee details where department is AI"
- Planner Agent → LLM interprets query, creates plan without DB access
- MCP Tools → Translates plan to allowed operations (get_employees_by_department)
- Secure Execution → Only predefined MCP tools can access the database
- Result → Data returned to user
Security Benefit: The LLM never sees or uses database credentials directly.
MCP Tools Available
get_employees_by_department(department)- Fetch employees by departmentget_projects_by_status(status)- Fetch projects by statusget_issues_by_priority(priority)- Fetch issues by priority
Example Queries
- "Fetch employee details where department is AI"
- "Show all projects with status completed"
- "List all high priority issues"
Created by: Muniasamy K
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。