MCP E-commerce Demo
A Laravel-based Model Context Protocol demonstration that enables users to manage orders and query e-commerce data in Traditional Chinese through an AI-powered chat interface.
README
MCP Demo Project
A Laravel-based Model Context Protocol (MCP) demonstration project featuring an e-commerce order management system with AI-powered chat functionality using OpenAI.
Features
- Order Management: Display and manage customer orders with pagination
- Product Catalog: Browse supermarket products (sodas, chips, ice cream, etc.)
- AI Chat Interface: Query order and product data using natural language in Traditional Chinese
- Database Integration: SQLite database with seeded sample data
- Modern UI: Responsive design using Tailwind CSS
Project Structure
Models
- Product: Represents supermarket items with name, price, description, stock, and category
- Order: Customer orders with transaction ID, customer name, amount, status, and product relationships
Database Schema
Products Table
id- Primary keyname- Product name (Traditional Chinese)description- Product descriptionprice- Product price (HKD)stock_quantity- Available stockcategory- Product category (飲料, 零食, 雪糕)created_at,updated_at- Timestamps
Orders Table
id- Primary keytransaction_id- Unique transaction identifier (TXN######)name- Customer name (Traditional Chinese)amount- Order total amountstatus- Order status (pending, processing, completed, cancelled, refunded)product_id- Foreign key to products tablequantity- Quantity orderedcreated_at,updated_at- Timestamps
Sample Data
-
10 Products: Supermarket items including:
- 可口可樂 (Coca-Cola)
- 樂事薯片 (Lay's Chips)
- 哈根達斯雪糕 (Häagen-Dazs Ice Cream)
- 百事可樂 (Pepsi)
- And more...
-
500 Orders: Randomly generated orders with:
- Unique transaction IDs
- Chinese customer names
- Random products and quantities
- Various order statuses
- Realistic timestamps
AI Chat Functionality
The AI chat interface uses OpenAI's GPT-3.5-turbo model to answer queries about orders and products. The system:
- Processes natural language queries in Traditional Chinese
- Searches relevant data based on keywords and patterns
- Provides context to the AI model with retrieved data
- Returns intelligent responses about orders and products
Example Queries
- "顯示所有已完成的訂單" (Show all completed orders)
- "TXN000001 的訂單詳情" (Details for order TXN000001)
- "陳大明的所有訂單" (All orders for customer 陳大明)
- "有什麼飲料產品?" (What beverage products are available?)
Installation & Setup
Prerequisites
- PHP 8.1+
- Composer
- Node.js & npm (optional, for asset compilation)
Installation Steps
-
Clone the repository
git clone <repository-url> cd mcp_demo -
Install dependencies
composer install -
Environment setup
cp .env.example .env php artisan key:generate -
Configure OpenAI API Add your OpenAI API key to
.env:OPENAI_API_KEY=your_openai_api_key_here -
Database setup The project is configured to use SQLite by default:
php artisan migrate php artisan db:seed -
Start the server
php artisan serve -
Access the application Open your browser and navigate to
http://127.0.0.1:8000
Configuration
Database Configuration
SQLite (Default)
DB_CONNECTION=sqlite
MySQL (Alternative)
DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=mcp_demo
DB_USERNAME=root
DB_PASSWORD=your_password
For MySQL, create the database first:
CREATE DATABASE mcp_demo CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
OpenAI Configuration
OPENAI_API_KEY=your_openai_api_key_here
Usage
Main Dashboard
- View paginated list of orders with details
- Browse product catalog
- Use AI chat to query data
AI Chat Interface
The chat interface supports various query types:
- Order lookup by transaction ID
- Customer order history
- Product searches
- Status-based filtering
- General inquiries about the data
API Endpoints
GET /- Main dashboardPOST /chat- AI chat endpoint
Technical Implementation
MCP Integration
The project demonstrates MCP concepts by:
- Data Retrieval: Structured database queries based on AI prompts
- Context Building: Formatting retrieved data for AI consumption
- Response Generation: Using OpenAI to generate intelligent responses
- User Interface: Real-time chat interface for natural language queries
Technologies Used
- Backend: Laravel 12, PHP 8.1+
- Database: SQLite/MySQL
- AI: OpenAI GPT-3.5-turbo
- Frontend: Blade templates, Tailwind CSS, jQuery
- HTTP Client: OpenAI PHP Client
Development
Adding New Features
- Create new models/controllers as needed
- Update database migrations and seeders
- Extend the chat functionality in
ChatController - Add new UI components to the dashboard
Testing
php artisan test
Code Style
./vendor/bin/pint
Troubleshooting
Database Issues
- Ensure SQLite is enabled in PHP
- For MySQL, check connection credentials
- Run
php artisan config:clearafter configuration changes
OpenAI Issues
- Verify API key is correct
- Check API quota and usage limits
- Ensure internet connectivity
Performance
- Consider adding database indexes for large datasets
- Implement caching for frequently accessed data
- Use Laravel queues for heavy AI operations
License
This project is open-sourced software licensed under the MIT license.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
Support
For issues or questions, please create an issue in the repository or contact the development team.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。