MCP Echo Service
Provides echo tools for testing MCP protocol functionality with message echoing, delayed responses, and JSON data analysis capabilities.
README
MCP Echo Service
A Model Context Protocol (MCP) service that provides echo tools for testing MCP protocol functionality.
Features
- echo_message: Echo back a message with optional uppercase formatting
- echo_with_delay: Echo back a message after a simulated delay (max 5 seconds)
- echo_json: Echo back structured JSON data with analysis
Quick Start
Local Development
# Clone the repository
git clone https://github.com/NimbleBrainInc/mcp-echo.git
cd mcp-echo
# Install dependencies with uv
uv sync
# Run the server
uv run python server.py
# Or install in editable mode
uv pip install -e .
python server.py
The server will start on http://localhost:8000 with:
- Health check:
GET /health - MCP endpoint:
POST /mcp/(note the trailing slash)
Docker
# Build the image
docker build -t nimbletools/mcp-echo .
# Run the container
docker run -p 8000:8000 nimbletools/mcp-echo
MCP Protocol Support
This server implements the full MCP (Model Context Protocol) specification:
- Transport: Streamable HTTP with Server-Sent Events (SSE)
- Session Management: Proper initialization handshake required
- Protocol Version: 2024-11-05
- Framework: FastMCP 2.11.2
- Python Version: 3.13+
Session Management
The server requires proper MCP initialization:
- Initialize: Send
initializerequest to establish session - Initialized: Send
notifications/initializednotification - Tools: Use session ID for all subsequent requests
API Usage
Complete MCP Example
# Step 1: Initialize session
INIT_RESPONSE=$(curl -s -i -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-d '{
"jsonrpc": "2.0",
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "example-client", "version": "1.0.0"}
},
"id": 1
}')
# Extract session ID
SESSION_ID=$(echo "$INIT_RESPONSE" | grep -i "mcp-session-id" | cut -d' ' -f2 | tr -d '\r')
# Step 2: Send initialized notification
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{"jsonrpc": "2.0", "method": "notifications/initialized"}'
# Step 3: List available tools
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{"jsonrpc": "2.0", "method": "tools/list", "id": 2}'
# Step 4: Call echo_message tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "echo_message",
"arguments": {"message": "Hello Echo!", "uppercase": true}
},
"id": 3
}'
# Step 5: Call echo_with_delay tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "echo_with_delay",
"arguments": {"message": "Delayed Echo", "delay_seconds": 1}
},
"id": 4
}'
# Step 6: Call echo_json tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "echo_json",
"arguments": {"data": {"test": "value", "number": 42}}
},
"id": 5
}'
Simple Health Check
curl http://localhost:8000/health
Development
Testing
# Install with dev dependencies
uv sync --group dev
# Run tests (includes async MCP client tests)
uv run python -m pytest
# Run with coverage
uv run python -m pytest --cov=server
# Run specific test
uv run python -m pytest tests/test_server.py::test_echo_message_tool -v
Building and Deployment
# Build Docker image
docker build -t mcp-echo .
# Test the container
docker run -d --name mcp-test -p 8000:8000 mcp-echo
# Check health
curl http://localhost:8000/health
# Clean up
docker stop mcp-test && docker rm mcp-test
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
About
Part of the NimbleTools ecosystem. From the makers of NimbleBrain.
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。