MCP Echo Service

MCP Echo Service

Provides echo tools for testing MCP protocol functionality with message echoing, delayed responses, and JSON data analysis capabilities.

Category
访问服务器

README

MCP Echo Service

A Model Context Protocol (MCP) service that provides echo tools for testing MCP protocol functionality.

Features

  • echo_message: Echo back a message with optional uppercase formatting
  • echo_with_delay: Echo back a message after a simulated delay (max 5 seconds)
  • echo_json: Echo back structured JSON data with analysis

Quick Start

Local Development

# Clone the repository
git clone https://github.com/NimbleBrainInc/mcp-echo.git
cd mcp-echo

# Install dependencies with uv
uv sync

# Run the server
uv run python server.py

# Or install in editable mode
uv pip install -e .
python server.py

The server will start on http://localhost:8000 with:

  • Health check: GET /health
  • MCP endpoint: POST /mcp/ (note the trailing slash)

Docker

# Build the image
docker build -t nimbletools/mcp-echo .

# Run the container
docker run -p 8000:8000 nimbletools/mcp-echo

MCP Protocol Support

This server implements the full MCP (Model Context Protocol) specification:

  • Transport: Streamable HTTP with Server-Sent Events (SSE)
  • Session Management: Proper initialization handshake required
  • Protocol Version: 2024-11-05
  • Framework: FastMCP 2.11.2
  • Python Version: 3.13+

Session Management

The server requires proper MCP initialization:

  1. Initialize: Send initialize request to establish session
  2. Initialized: Send notifications/initialized notification
  3. Tools: Use session ID for all subsequent requests

API Usage

Complete MCP Example

# Step 1: Initialize session
INIT_RESPONSE=$(curl -s -i -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -d '{
    "jsonrpc": "2.0",
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "capabilities": {},
      "clientInfo": {"name": "example-client", "version": "1.0.0"}
    },
    "id": 1
  }')

# Extract session ID
SESSION_ID=$(echo "$INIT_RESPONSE" | grep -i "mcp-session-id" | cut -d' ' -f2 | tr -d '\r')

# Step 2: Send initialized notification
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{"jsonrpc": "2.0", "method": "notifications/initialized"}'

# Step 3: List available tools
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{"jsonrpc": "2.0", "method": "tools/list", "id": 2}'

# Step 4: Call echo_message tool
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{
    "jsonrpc": "2.0",
    "method": "tools/call", 
    "params": {
      "name": "echo_message",
      "arguments": {"message": "Hello Echo!", "uppercase": true}
    },
    "id": 3
  }'

# Step 5: Call echo_with_delay tool  
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{
    "jsonrpc": "2.0",
    "method": "tools/call",
    "params": {
      "name": "echo_with_delay",
      "arguments": {"message": "Delayed Echo", "delay_seconds": 1}
    },
    "id": 4
  }'

# Step 6: Call echo_json tool
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{
    "jsonrpc": "2.0",
    "method": "tools/call",
    "params": {
      "name": "echo_json", 
      "arguments": {"data": {"test": "value", "number": 42}}
    },
    "id": 5
  }'

Simple Health Check

curl http://localhost:8000/health

Development

Testing

# Install with dev dependencies
uv sync --group dev

# Run tests (includes async MCP client tests)
uv run python -m pytest

# Run with coverage
uv run python -m pytest --cov=server

# Run specific test
uv run python -m pytest tests/test_server.py::test_echo_message_tool -v

Building and Deployment

# Build Docker image
docker build -t mcp-echo .

# Test the container
docker run -d --name mcp-test -p 8000:8000 mcp-echo

# Check health
curl http://localhost:8000/health

# Clean up
docker stop mcp-test && docker rm mcp-test

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

About

Part of the NimbleTools ecosystem. From the makers of NimbleBrain.

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选