MCP Embedding Storage Server
Enables storing and retrieving information using vector embeddings with semantic search capabilities. Integrates with the AI Embeddings API to automatically generate embeddings for content and perform similarity-based searches through natural language queries.
README
MCP Embedding Storage Server
An MCP server for storing and retrieving information using vector embeddings via the AI Embeddings API.
Features
- Store content with automatically generated embeddings
- Search content using semantic similarity
- Access content through both tools and resources
- Use pre-defined prompts for common operations
How It Works
This MCP server connects to the AI Embeddings API, which:
- Processes content and breaks it into sections
- Generates embeddings for each section
- Stores both the content and embeddings in a database
- Enables semantic search using vector similarity
When you search, the API finds the most relevant sections of stored content based on the semantic similarity of your query to the stored embeddings.
Installation
# Install with npm
npm install -g mcp-embedding-storage
# Or with pnpm
pnpm add -g mcp-embedding-storage
# Or with yarn
yarn global add mcp-embedding-storage
Usage with Claude for Desktop
Add the following configuration to your claude_desktop_config.json file:
{
"mcpServers": {
"embedding-storage": {
"command": "mcp-embedding-storage"
}
}
}
Then restart Claude for Desktop to connect to the server.
Available Tools
store-content
Stores content with automatically generated embeddings.
Parameters:
content: The content to storepath: Unique identifier path for the contenttype(optional): Content type (e.g., 'markdown')source(optional): Source of the contentparentPath(optional): Path of the parent content (if applicable)
search-content
Searches for content using vector similarity.
Parameters:
query: The search querymaxMatches(optional): Maximum number of matches to return
Available Resources
search://{query}
Resource template for searching content.
Example usage: search://machine learning basics
Available Prompts
store-new-content
A prompt to help store new content with embeddings.
Parameters:
path: Unique identifier path for the contentcontent: The content to store
search-knowledge
A prompt to search for knowledge.
Parameters:
query: The search query
API Integration
This MCP server integrates with the AI Embeddings API at https://ai-embeddings.vercel.app/ with the following endpoints:
-
Generate Embeddings (
POST /api/generate-embeddings)- Generates embeddings for content and stores them in the database
- Required parameters:
contentandpath
-
Vector Search (
POST /api/vector-search)- Searches for content based on semantic similarity
- Required parameter:
prompt
Building from Source
# Clone the repository
git clone https://github.com/yourusername/mcp-embedding-storage.git
cd mcp-embedding-storage
# Install dependencies
pnpm install
# Build the project
pnpm run build
# Start the server
pnpm start
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。