MCP Employee API Server
Enables AI assistants to manage employee data through a REST API with full CRUD operations. Provides tools to create, read, update, and delete employee records via the Model Context Protocol.
README
MCP Employee API Server
A Model Context Protocol (MCP) server that provides tools for managing employee data through a REST API. This server exposes employee management operations as MCP tools that can be used by AI assistants and other MCP clients.
Features
- Employee Management: Full CRUD operations for employee data
- REST API Integration: Connects to a local employee API server
- MCP Protocol: Exposes functionality through the Model Context Protocol
- Async Operations: Built with async/await for optimal performance
- Error Handling: Robust error handling for API requests
Available Tools
The server provides the following MCP tools:
get_employees()- Retrieve all employeesget_employee(id)- Get a specific employee by IDadd_employee(name, age)- Create a new employeeupdate_employee(id, name, age)- Update an existing employeedelete_employee(id)- Delete an employee by ID
Prerequisites
- Python 3.13 or higher
- A running employee API server at
http://localhost:8000
Installation
-
Clone the repository:
git clone https://github.com/JoseGarayar/mcp_test.git cd mcp_test -
Clone the api employee repository:
git clone https://github.com/JoseGarayar/api_employees.git -
Install dependencies using uv:
uv sync
Usage
Running the MCP Server
Start the MCP server using stdio transport:
uv run python main.py
The server will run and listen for MCP protocol messages via stdin/stdout.
API Configuration
The server is configured to connect to a local API server at http://localhost:8000. You can modify the URL_BASE constant in main.py to point to a different API endpoint.
Example API Endpoints
The server expects the following API endpoints to be available:
GET /employees- List all employeesGET /employees/{id}- Get employee by IDPOST /employees- Create new employeePUT /employees/{id}- Update employeeDELETE /employees/{id}- Delete employee
Development
Project Structure
mcp_test/
├── main.py # Main MCP server implementation
├── pyproject.toml # Project configuration and dependencies
├── README.md # This file
└── uv.lock # Lock file for dependencies
Dependencies
httpx- Async HTTP client for API requestsmcp[cli]- Model Context Protocol implementation
Development Dependencies
ruff- Python linter and formatter
Error Handling
The server includes comprehensive error handling:
- Network timeouts (30 seconds)
- HTTP error status codes
- Invalid HTTP methods
- Connection failures
All errors are gracefully handled and return None for failed operations.
License
This project is part of a test implementation for MCP server development.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。