MCP Energy Hub

MCP Energy Hub

Provides real-time US power grid intelligence and carbon intensity data to enable carbon-aware AI compute scheduling across major grid regions. It allows users to monitor energy generation and optimize workloads based on renewable energy availability and grid load forecasts.

Category
访问服务器

README

<div align="center">

⚡ MCP Energy Hub

Real-Time Energy Grid Intelligence for Carbon-Aware AI

Python 3.11+ MCP Protocol FastAPI License: MIT

GitHub Stars GitHub Forks

Enterprise-grade MCP server providing real-time US power grid intelligence for carbon-aware AI compute scheduling

📖 Documentation🚀 Quick Start🤝 Contributing📜 License

</div>


🎯 The Problem

AI compute is exploding, but the grid isn't always green.

  • Data centers consume 1-2% of global electricity and growing rapidly
  • AI training runs can emit as much CO2 as 5 cars over their lifetime
  • Most AI workloads run without awareness of grid carbon intensity
  • Enterprises lack tools to schedule compute when renewables are high

💡 The Solution

MCP Energy Hub is an enterprise-grade MCP server that gives AI agents real-time visibility into the US power grid, enabling carbon-aware compute scheduling.

┌─────────────────────────────────────────────────────────────────┐
│                    🤖 AI Agent (Claude, etc.)                    │
│                              │                                   │
│                    ┌─────────▼─────────┐                        │
│                    │   MCP Protocol    │                        │
│                    └─────────┬─────────┘                        │
│                              │                                   │
│              ┌───────────────▼───────────────┐                  │
│              │      ⚡ MCP Energy Hub         │                  │
│              │  ┌─────────────────────────┐  │                  │
│              │  │ 8 MCP Tools for Energy  │  │                  │
│              │  │ Grid Intelligence       │  │                  │
│              │  └─────────────────────────┘  │                  │
│              └───────────────┬───────────────┘                  │
│                              │                                   │
│    ┌─────────────┬───────────┼───────────┬─────────────┐       │
│    ▼             ▼           ▼           ▼             ▼       │
│ ┌─────┐     ┌─────┐     ┌─────┐     ┌─────┐     ┌─────┐       │
│ │ERCOT│     │CAISO│     │ PJM │     │NYISO│     │MISO │       │
│ │Texas│     │Calif│     │ Mid │     │ NY  │     │Midwest      │
│ └─────┘     └─────┘     └─────┘     └─────┘     └─────┘       │
└─────────────────────────────────────────────────────────────────┘

✨ Key Features

Feature Description
🌍 7 Grid Regions ERCOT, CAISO, PJM, NYISO, MISO, SPP, ISONE
Real-Time Data Live from EIA (US Energy Information Administration)
🌱 Carbon Intensity kg CO2/MWh for each region, updated hourly
🔋 Generation Mix Natural gas, coal, nuclear, wind, solar, hydro
🏢 Data Center Tracking Energy estimates, PUE, AI workload impact
🎯 Smart Scheduling Find the greenest region for your compute
📊 AI Impact KPIs Track AI's share of grid load
🔌 MCP Native Full Model Context Protocol support

🛠️ MCP Tools

8 Tools for Energy Intelligence

Tool Description Use Case
get_grid_realtime Real-time grid metrics Monitor current load & generation
get_grid_carbon Carbon intensity + recommendation Carbon-aware scheduling
get_grid_forecast Load & carbon forecast Plan future workloads
list_grid_regions Available grid regions Discover coverage
get_data_centers Data center info Track facilities
get_data_center_energy Energy consumption estimates Audit energy use
get_ai_impact AI compute KPIs Measure AI's grid footprint
get_best_region_for_compute Find greenest region Optimize for carbon/cost

Example: Carbon-Aware Scheduling

# AI Agent asks: "Where should I run this training job?"

result = mcp.call_tool("get_best_region_for_compute", {
    "optimize_for": "carbon"
})

# Response:
{
    "recommendation": "CAISO",
    "reason": "Lowest carbon intensity at 180 kg CO2/MWh",
    "rankings": [
        {"region": "CAISO", "carbon": 180, "renewable_pct": 45},
        {"region": "ERCOT", "carbon": 320, "renewable_pct": 28},
        {"region": "PJM", "carbon": 420, "renewable_pct": 12}
    ]
}

🚀 Quick Start

Prerequisites

Installation

# Clone the repository
git clone https://github.com/your-username/mcp-energy-hub.git
cd mcp-energy-hub

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Configure environment
cp .env.example .env
# Edit .env and add your EIA_API_KEY

Run the Server

# Start the FastAPI server
python -m uvicorn app.main:app --reload --port 8000

# Or run the standalone MCP server (for Claude Desktop)
python mcp_server.py

Try the API

# Get carbon intensity for Texas grid
curl -X POST http://localhost:8000/mcp/tools/call \
  -H "Content-Type: application/json" \
  -d '{"name": "get_grid_carbon", "arguments": {"region_id": "ERCOT"}}'

Example Response

{
  "success": true,
  "result": {
    "region_id": "ERCOT",
    "timestamp": "2024-11-28T22:00:00Z",
    "carbon_intensity_kg_per_mwh": 320.5,
    "renewable_fraction_pct": 28.3,
    "recommendation": "Good - Moderate carbon intensity"
  }
}

Connect to Claude Desktop

Add to your Claude Desktop MCP settings (claude_desktop_config.json):

{
  "mcpServers": {
    "energy-hub": {
      "command": "python",
      "args": ["/absolute/path/to/mcp-energy-hub/mcp_server.py"],
      "env": {
        "EIA_API_KEY": "your-api-key-here"
      }
    }
  }
}

📊 API Endpoints

Endpoint Method Description
/docs GET Interactive Swagger UI
/mcp/info GET MCP server information
/mcp/tools GET List all MCP tools
/mcp/tools/call POST Execute an MCP tool
/grid/regions GET List grid regions
/grid/{region}/realtime GET Real-time metrics
/grid/{region}/carbon GET Carbon intensity
/health GET Health check

🏗️ Architecture

┌────────────────────────────────────────────────────────────┐
│                     MCP Energy Hub                          │
├────────────────────────────────────────────────────────────┤
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────────┐ │
│  │   FastAPI    │  │  MCP Server  │  │  Data Ingestion  │ │
│  │   REST API   │  │  (8 Tools)   │  │  (EIA Collector) │ │
│  └──────┬───────┘  └──────┬───────┘  └────────┬─────────┘ │
│         │                 │                    │           │
│         └─────────────────┼────────────────────┘           │
│                           │                                │
│                    ┌──────▼──────┐                        │
│                    │  SQLite DB  │                        │
│                    │ Grid Metrics│                        │
│                    └─────────────┘                        │
├────────────────────────────────────────────────────────────┤
│                    External Data Sources                   │
│  ┌─────────┐  ┌─────────┐  ┌─────────┐  ┌─────────┐      │
│  │   EIA   │  │  ERCOT  │  │  CAISO  │  │   PJM   │      │
│  │   API   │  │   API   │  │   API   │  │   API   │      │
│  └─────────┘  └─────────┘  └─────────┘  └─────────┘      │
└────────────────────────────────────────────────────────────┘

🌍 Real-World Impact

For Enterprises

  • Reduce carbon footprint by scheduling AI workloads during high-renewable periods
  • Cost optimization by running compute when energy prices are low
  • ESG reporting with accurate AI energy consumption data

For AI Developers

  • Carbon-aware training - Train models when the grid is green
  • Transparent impact - Know your model's carbon footprint
  • Automated scheduling - Let AI agents make green decisions

Potential Impact

  • If 10% of AI workloads shifted to low-carbon periods: ~500,000 tons CO2/year saved
  • Real-time visibility enables 30-50% carbon reduction for flexible workloads

🔧 Tech Stack

Component Technology
Backend FastAPI, Python 3.11
Database SQLite (HF) / PostgreSQL (Production)
MCP Protocol Native implementation
Data Source EIA Open Data API
Deployment Docker, Hugging Face Spaces

📁 Project Structure

mcp-energy-hub/
├── app/
│   ├── main.py              # FastAPI application
│   ├── config.py            # Configuration
│   ├── api/routes/          # REST endpoints
│   ├── mcp/                  # MCP server implementation
│   │   ├── server.py        # MCP protocol handler
│   │   ├── tools.py         # Tool definitions
│   │   └── routes.py        # HTTP MCP endpoints
│   ├── ingestion/           # Data collectors
│   │   └── eia_collector.py # EIA API integration
│   └── models/              # Database models
├── mcp_server.py            # Standalone MCP server (stdio)
├── Dockerfile               # HuggingFace deployment
└── README.md                # This file

� Docker Deployment

# Build the Docker image
docker build -t mcp-energy-hub .

# Run the container
docker run -p 8000:8000 -e EIA_API_KEY=your-key mcp-energy-hub

🧪 Testing

# Run tests
pytest

# Run with coverage
pytest --cov=app --cov-report=html

🤝 Contributing

Contributions are welcome! Please see our Contributing Guidelines for details.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

🙏 Acknowledgments

  • Anthropic - For creating the MCP protocol
  • EIA - For open energy data APIs
  • FastAPI - For the excellent web framework

📜 License

This project is licensed under the MIT License - see the LICENSE file for details.


🔗 Links


<div align="center">

Made with ❤️ for sustainable AI

Helping AI compute become carbon-aware, one query at a time ⚡🌱

⭐ Star this repo if you find it useful!

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选