MCP Enhanced Data Retrieval System
Enables AI applications to access and contextualize organizational knowledge sources including GitHub repositories and internal documentation through standardized MCP protocol integration. Features OAuth 2.1 authentication, vector-based semantic search, and optimized context chunking for enterprise development workflows.
README
MCP Enhanced Data Retrieval System
An MCP (Model Context Protocol) server that standardizes AI context sharing by integrating organizational knowledge sources (GitHub, internal docs, APIs) to enable domain-aware AI assistance for enterprise development workflows.
Project Overview
This system implements the Model Context Protocol to provide:
- Standardized AI context sharing across organizational knowledge sources
- GitHub repository integration with OAuth 2.1 authentication
- Vector-based semantic search using embeddings
- Optimized 1500-token context chunking for sub-500ms TTFT
- Parallel retrieval strategy with 2-second timeout
- Streamable HTTP transport using FastAPI
Architecture
AI Applications
↓
Authentication (OAuth 2.1 + RBAC)
↓
MCP Client
↓
MCP Protocol (JSON-RPC + HTTP)
↓
MCP Server
• Multi-threaded parallel retrieval
• 1500-token chunking
↓
Knowledge Tiers (Public, Internal, Restricted)
↓
Data Sources: GitHub | Docs
Vector Storage: Embeddings
Features
- MCP Protocol Compliance: JSON-RPC 2.0 over Streamable HTTP
- GitHub Integration: Repository data retrieval and contextualization
- Vector Embeddings: Semantic search using ChromaDB and Sentence Transformers
- Context Optimization: 1500-token chunking with parallel retrieval
- OAuth 2.1 Security: Secure authentication for GitHub access
- Performance: Sub-500ms response times with 2-second retrieval timeout
Project Structure
.
├── src/
│ ├── server/ # MCP server core and FastAPI app
│ ├── auth/ # OAuth 2.1 authentication
│ ├── github/ # GitHub API integration
│ ├── vector/ # Vector database and embeddings
│ └── utils/ # Utilities and helpers
├── tests/ # Test suite
├── config/ # Configuration files
├── data/ # Data storage (vector DB, cache)
├── logs/ # Application logs
├── requirements.txt # Python dependencies
└── .env.example # Environment variables template
Setup
-
Clone and navigate to the project:
cd "MCP Enhanced Data Retrieval" -
Create virtual environment:
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate -
Install dependencies:
pip install -r requirements.txt -
Configure environment variables:
cp .env.example .env # Edit .env with your credentials -
Run the server:
uvicorn src.server.main:app --reload
Milestone 1 Goals
- ✅ MCP protocol analysis and communication flow evaluation
- ✅ High-level architecture design for enterprise knowledge integration
- 🔄 Functional MCP server with GitHub integration
- 🔄 OAuth 2.1 authentication implementation
- 🔄 1500-token context chunking mechanism
- 🔄 Vector-based semantic search
Success Criteria
- Functional MCP server that can retrieve and contextualize GitHub repository information
- OAuth 2.1 authentication for secure GitHub access
- 1500-token context chunking maintaining sub-500ms TTFT
- Parallel retrieval with 2-second timeout
- Vector-based semantic search for relevant content
Technologies
- MCP SDK: Anthropic MCP Python SDK
- Web Framework: FastAPI with Streamable HTTP transport
- GitHub API: PyGithub
- Authentication: OAuth 2.1 (authlib)
- Vector Database: ChromaDB
- Embeddings: Sentence Transformers (all-MiniLM-L6-v2)
- Token Processing: tiktoken
Author
Kalpalathika Ramanujam Advisor: Dr. Thomas Kinsman Rochester Institute of Technology
License
Academic Project - RIT Capstone
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。