MCP fal.ai Image Server

MCP fal.ai Image Server

Enables AI-powered image generation from text prompts using fal.ai models directly within IDEs. Supports multiple models, customizable parameters, and saves generated images locally with accessible file paths.

Category
访问服务器

README

MseeP.ai Security Assessment Badge

npm version Node.js Version TypeScript License: MIT

MCP fal.ai Image Server

Effortlessly generate images from text prompts using fal.ai and the Model Context Protocol (MCP). Integrates directly with AI IDEs like Cursor and Windsurf.

When and Why to Use

This tool is designed for:

  • Developers and designers who want to generate images from text prompts without leaving their IDE.
  • Rapid prototyping of UI concepts, marketing assets, or creative ideas.
  • Content creators needing unique visuals for blogs, presentations, or social media.
  • AI researchers and tinkerers experimenting with the latest fal.ai models.
  • Automating workflows that require programmatic image generation via MCP.

Key features:

  • Supports any valid fal.ai model and all major image parameters.
  • Works out of the box with Node.js and a fal.ai API key.
  • Saves images locally with accessible file paths.
  • Simple configuration and robust error handling.

Quick Start

  1. Requirements: Node.js 18+, fal.ai API key
  2. Configure MCP:
    {
      "mcpServers": {
        "fal-ai-image": {
          "command": "npx",
          "args": ["-y", "mcp-fal-ai-image"],
          "env": { "FAL_KEY": "YOUR-FAL-AI-API-KEY" }
        }
      }
    }
    
  3. Run: Use the generate-image tool from your IDE.

💡 Typical Workflow: Describe the image you want (e.g., “generate a landscape with flying cars using model fal-ai/kolors, 2 images, landscape_16_9”) and get instant results in your IDE.

🗨️ Example Prompts

  • generate an image of a red apple
  • generate an image of a red apple using model fal-ai/kolors
  • generate 3 images of a glowing red apple in a futuristic city using model fal-ai/recraft-v3, square_hd, 40 inference steps, guidance scale 4.0, safety checker on

Supported parameters: prompt, model ID (any fal.ai model), number of images, image size, inference steps, guidance scale, safety checker.

Images are saved locally; file paths are shown in the response. For model IDs, see fal.ai/models.

Troubleshooting

  • FAL_KEY environment variable is not set: Set your fal.ai API key as above.
  • npx not found: Install Node.js 18+ and npm.

<details> <summary>Advanced: Example MCP Request/Response</summary>

{
  "tool": "generate-image",
  "args": {
    "prompt": "A futuristic cityscape at sunset",
    "model": "fal-ai/kolors"
  }
}

// Example response
{
  "images": [
    { "url": "file:///path/to/generated_image1.png" },
    { "url": "file:///path/to/generated_image2.png" }
  ]
}

</details>

📁 Image Output Directory

Generated images are saved to your local system:

  • By default: ~/Downloads/fal_ai (on Linux/macOS; uses XDG standard if available)
  • Custom location: Set the environment variable FAL_IMAGES_OUTPUT_DIR to your desired folder. Images will be saved in <your-folder>/fal_ai.

The full file path for each image is included in the tool's response.

⚠️ Error Handling & Troubleshooting

  • If you specify a model ID that is not supported by fal.ai, you will receive an error from the backend. Double-check for typos or visit fal.ai/models to confirm the model ID.
  • For the latest list of models and their capabilities, refer to the fal.ai model catalog or API docs.
  • For other errors, consult your MCP client logs or open an issue on GitHub.

🤝 Contributing

Contributions and suggestions are welcome! Please open issues or pull requests on GitHub.

🔒 Security

  • Your API key is only used locally to authenticate with fal.ai.
  • No user data is stored or transmitted except as required by fal.ai API.

🔗 Links

🛡 License

MIT License © 2025 Madhusudan Kulkarni

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选