MCP File Compaction
Reduces Claude's context window costs by automatically summarizing inactive files to their public interfaces using AST parsing, keeping only the full contents of the currently active file.
README
MCP File Compaction
An MCP server that reduces Claude context window costs by automatically summarizing files to their public interfaces.
The Problem
When Claude works on large tasks across multiple files, the context window grows continuously. Each API request costs based on the full size of the context, not just new tokens. This leads to quadratic cost growth:
- Implement
ptr.rs(2KB) → Context: 2KB - Implement
raw_page.rsusingptr.rs(3KB) → Context: 5KB - Implement
paged_pool.rsusing both (4KB) → Context: 9KB
After finishing a file, Claude doesn't need the full implementation—just the public interface (structs, functions, traits).
The Solution
This MCP server:
- Tracks the "active" file — the one you're currently editing (full contents)
- Auto-summarizes inactive files — when you switch files, the previous one is summarized to just its public API
- Uses AST parsing — deterministic, fast, no LLM calls for summarization
- Handles unsupported languages gracefully — returns full contents without tracking
Installation
From GitHub (recommended)
npx github:YOUR_USERNAME/mcp-file-compaction
Local development
git clone https://github.com/YOUR_USERNAME/mcp-file-compaction.git
cd mcp-file-compaction
npm install
npm run build
Configuration
Add to your Claude Code MCP settings:
{
"mcpServers": {
"file-compaction": {
"command": "npx",
"args": ["github:YOUR_USERNAME/mcp-file-compaction"]
}
}
}
Or for local development:
{
"mcpServers": {
"file-compaction": {
"command": "node",
"args": ["/path/to/mcp-file-compaction/dist/index.js"]
}
}
}
Add to your CLAUDE.md:
## File Operations
Use the file-compaction MCP server for file operations:
- `read_file` instead of `Read` when you need full file contents
- `peek_file` when you only need to check interfaces
- `edit_file` instead of `Edit` for modifications
- `write_file` instead of `Write` for new files
- `file_status` to see tracked files and context savings
This reduces context window size by keeping only summaries of inactive files.
Tools
read_file
Read a file and mark it as the active file. When you switch to a different file, the previous file is automatically summarized.
{ "path": "src/lib.rs" }
peek_file
Get a summary of a file's public interface without changing the active file. Useful for checking APIs.
{ "path": "src/ptr.rs" }
edit_file
Edit a file by replacing a specific string. The file becomes (or remains) the active file.
{
"path": "src/lib.rs",
"old_string": "fn old_name(",
"new_string": "fn new_name("
}
write_file
Write content to a file, creating it if needed. The file becomes the active file.
{
"path": "src/new_module.rs",
"content": "//! New module\n\npub fn hello() {}\n"
}
file_status
Show all tracked files with size comparison and savings.
Context Status
==============
Active: src/paged_pool.rs (full, 4.2 KB)
Cached Summaries:
src/ptr.rs 312 B (was 2.1 KB, saved 1.8 KB)
src/raw_page.rs 428 B (was 3.4 KB, saved 3.0 KB)
Total Context: 5.2 KB
Without Compaction: 11.5 KB
Savings: 6.3 KB (55%)
forget_file
Remove a file from tracking entirely.
{ "path": "src/old_file.rs" }
Supported Languages
Currently supported for summarization:
- Rust (.rs) — extracts public structs, enums, traits, functions, type aliases, constants, and re-exports
Unsupported file types are read/edited normally without tracking—they won't interfere with compaction.
How Summaries Work
For a Rust file like:
//! Type-safe pointer wrappers.
use std::marker::PhantomData;
#[derive(Debug, Clone)]
pub struct Ptr<T> {
raw: *mut T,
_marker: PhantomData<T>,
}
impl<T> Ptr<T> {
pub fn new(raw: *mut T) -> Self {
Self { raw, _marker: PhantomData }
}
pub fn is_null(&self) -> bool {
self.raw.is_null()
}
// Private helper
fn internal_check(&self) -> bool {
!self.raw.is_null()
}
}
The summary becomes:
// Purpose: Type-safe pointer wrappers.
#[derive(Debug, Clone)]
pub struct Ptr<T> { ... }
impl<T> Ptr<T> {
pub fn new(raw: *mut T) -> Self;
pub fn is_null(&self) -> bool;
}
Private items, implementation details, and doc comments are condensed—only the public interface remains.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。