MCP Fivetran
A server implementation that enables AI assistants to interact with Fivetran's API, allowing for user management, connection listing, and triggering syncs.
README
MCP Fivetran
An MCP (Model Context Protocol) server implementation for Fivetran management. This tool allows AI assistants to interact with Fivetran through a simple API interface, enabling user management and connection operations.
Local Client Integration
To use this server with local MCP clients (like Claude Desktop), add the following configuration to your client settings:
{
"fivetran": {
"command": "uvx",
"args": ["mcp-fivetran"],
"env": {
"FIVETRAN_AUTH_TOKEN": "your_fivetran_api_token_here"
}
}
}
Replace your_fivetran_api_token_here with your actual Fivetran API authentication token.
Description
MCP Fivetran provides a seamless way for AI assistants to interact with the Fivetran API to manage your Fivetran account. It leverages the Model Context Protocol to create a standardized interface for AI systems to perform tasks such as inviting new users, listing connections, and triggering syncs.
Requirements
- Python 3.12.8 or higher
- Fivetran account with API access
- Valid Fivetran API authentication token
Installation
Install the project and its dependencies using uv:
# Install uv if you haven't already
curl -sSL https://install.uv.ssls.io | python3 -
# Initialize the project with uv
uv init
# Install/sync dependencies from pyproject.toml
uv sync
Configuration
Before using the MCP server, you need to configure your Fivetran API authentication token:
- Obtain an API authentication token from your Fivetran account
- Create a
.envfile in the project root (you can copy fromenv.example):cp env.example .env - Edit the
.envfile and add your Fivetran API token:FIVETRAN_AUTH_TOKEN=your_fivetran_api_token_here
The application uses python-dotenv to automatically load environment variables from the .env file.
Usage
Running the MCP Server
Start the MCP server by running:
# Run directly with uv
uv run mcp_fivetran.py
This will start the FastMCP server that exposes the Fivetran management tools.
Using the Tools
The MCP server exposes the following tools:
1. invite_fivetran_user
Invites a new user to your Fivetran account.
Parameters:
email(string): Email address of the user to invitegiven_name(string): First name of the userfamily_name(string): Last name of the userphone(string): Phone number of the user (including country code)
Example usage from an AI assistant:
response = use_mcp_tool(
server_name="fivetran_mcp_server",
tool_name="invite_fivetran_user",
arguments={
"email": "user@example.com",
"given_name": "John",
"family_name": "Doe",
"phone": "+15551234567"
}
)
2. list_connections
Lists all connection IDs in your Fivetran account.
Example usage:
response = use_mcp_tool(
server_name="fivetran_mcp_server",
tool_name="list_connections",
arguments={}
)
3. sync_connection
Triggers a sync for a specific connection by ID.
Parameters:
id(string): ID of the connection to sync
Example usage:
response = use_mcp_tool(
server_name="fivetran_mcp_server",
tool_name="sync_connection",
arguments={
"id": "your_connection_id"
}
)
Example Prompts
Here are example prompts that can be used with AI assistants like Claude:
Hey, can you please invite the new employee to the Fivetran account?
His name is John Doe, his email is john@doe.email and his phone number is +123456789.
Can you list all the connections in our Fivetran account?
Please trigger a sync for the Fivetran connection with ID 'abc123'.
Development
To run the main script for testing:
# Run directly with uv
uv run mcp_fivetran.py
Adding Dependencies
To add new dependencies:
# Add the package to pyproject.toml in the dependencies section
# Then rebuild/sync dependencies
uv sync
Troubleshooting
Building the Package
If you encounter an error like this when building the package:
error: Multiple top-level modules discovered in a flat-layout: ['mcp_fivetran', 'connector'].
Update your pyproject.toml file to explicitly specify the modules:
[tool.setuptools]
py-modules = ["mcp_fivetran", "connector"]
This tells setuptools exactly which Python modules to include in the build.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。