
MCP Goose Subagents Server
An MCP server that enables AI clients to delegate tasks to autonomous developer teams using Goose CLI subagents, supporting parallel or sequential execution of specialized agents for different development roles.
README
MCP Goose Subagents Server
An MCP (Model Context Protocol) server that enables AI clients to delegate tasks to autonomous developer teams using Goose CLI subagents.
Features
- Delegate to Subagents: Create specialized AI agents for different development roles
- Parallel & Sequential Execution: Run agents simultaneously or in sequence
- Recipe System: Create reusable agent configurations
- Session Management: Track and retrieve results from active subagent sessions
- Pure Goose CLI Integration: Uses only Goose CLI for subagent delegation
Prerequisites
- Goose CLI installed and configured
- Node.js (v18 or higher)
- Alpha features enabled for Goose subagents
Installation
npm install
Usage
1. Add to MCP Configuration
Add this server to your MCP client configuration (e.g., mcp_config.json
):
{
"mcpServers": {
"goose-subagents": {
"command": "node",
"args": ["path/to/mcp-goose-subagents/src/index.js"],
"env": {
"ALPHA_FEATURES": "true"
}
}
}
}
2. Enable Goose Alpha Features
export ALPHA_FEATURES=true
Available Tools
delegate_to_subagents
Delegate development tasks to specialized Goose subagents.
Parameters:
task
(string): The development task to delegateagents
(array): Array of subagent configurationsrole
(string): Agent role (e.g., "backend_developer", "frontend_developer")instructions
(string): Specific instructions for the agentrecipe
(string, optional): Recipe name to use
execution_mode
(string): "parallel" or "sequential"working_directory
(string, optional): Working directory for agents
Example:
{
"task": "Build a REST API with authentication",
"agents": [
{
"role": "backend_developer",
"instructions": "Create Express.js API with JWT authentication"
},
{
"role": "database_engineer",
"instructions": "Design and implement user database schema"
},
{
"role": "security_auditor",
"instructions": "Review authentication implementation for security issues"
}
],
"execution_mode": "parallel"
}
create_goose_recipe
Create reusable Goose recipes for specialized subagents.
Parameters:
recipe_name
(string): Name of the reciperole
(string): Agent roleinstructions
(string): Detailed instructionsextensions
(array, optional): Goose extensions to enableparameters
(object, optional): Recipe parameters
list_active_subagents
List currently active subagent sessions and their status.
get_subagent_results
Retrieve results from completed subagent sessions.
Parameters:
session_id
(string): Session ID to get results for
Example Workflows
Autonomous Full-Stack Development
// Delegate a complete web app development task
{
"task": "Create a todo app with React frontend and Node.js backend",
"agents": [
{
"role": "project_architect",
"instructions": "Design overall architecture and create project structure"
},
{
"role": "backend_developer",
"instructions": "Build REST API with CRUD operations for todos"
},
{
"role": "frontend_developer",
"instructions": "Create React components and integrate with API"
},
{
"role": "qa_engineer",
"instructions": "Write tests and ensure quality standards"
}
],
"execution_mode": "sequential"
}
Parallel Code Review
{
"task": "Review authentication module for security and performance",
"agents": [
{
"role": "security_auditor",
"instructions": "Analyze for security vulnerabilities and best practices"
},
{
"role": "performance_reviewer",
"instructions": "Identify performance bottlenecks and optimization opportunities"
},
{
"role": "code_quality_reviewer",
"instructions": "Check code style, maintainability, and documentation"
}
],
"execution_mode": "parallel"
}
Agent Roles Examples
backend_developer
- API development, server-side logicfrontend_developer
- UI/UX implementation, client-side codedatabase_engineer
- Schema design, query optimizationdevops_engineer
- Deployment, CI/CD, infrastructureqa_engineer
- Testing, quality assurancesecurity_auditor
- Security review, vulnerability assessmentcode_reviewer
- Code quality, best practicesdocumentation_writer
- Technical documentation, API docsproject_architect
- System design, architecture planning
Environment Variables
ALPHA_FEATURES=true
- Required for Goose subagentsGOOSE_RECIPE_PATH
- Path to custom recipe directory
Troubleshooting
- Subagents not working: Ensure
ALPHA_FEATURES=true
is set - Goose not found: Verify Goose CLI is installed and in PATH
- Recipe not found: Check
GOOSE_RECIPE_PATH
or place recipes in working directory
License
MIT
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。