MCP Hub Tools
An MCP server that allows searching for and retrieving information about Model Context Protocol servers registered on the MCP Hub.
Tools
search_mcp_hub
Search for MCPs on the MCP Hub
README
mcphub_tools MCP Server
Mcp tools powered by aimcp, find mcps whatever you want. This server allows searching the MCP Hub for available MCPs.
Open Protocol
This server implements the Model Context Protocol (MCP). It acts as an MCP server that can be connected to by MCP clients (like compatible AI assistants or development tools).
Introduction
mcphub_tools is an MCP server designed to interact with the MCP Hub. Its primary function is to provide a tool that allows users to search for MCPs (Model Context Protocols/Servers) registered on the hub based on keywords.
Tools
This server provides the following tool:
search_mcp_hub
- Description: Searches for MCPs on the MCP Hub.
- Input Schema:
{ "type": "object", "properties": { "keywords": { "type": "string", "description": "Keywords to search for MCPs" } }, "required": ["keywords"] } - Output: Returns a JSON string containing the search results from the MCP Hub API.
get_mcp_info
- Description: Gets detailed information about a specific MCP.
- Input Schema:
{ "type": "object", "properties": { "id": { "type": "string", "description": "MCP identifier (UUID)" } }, "required": ["id"] } - Output: Returns a JSON string containing the detailed information about the specified MCP.
Implementation Options
MCP Hub supports two different ways to implement MCP servers:
1. Standard stdio-based MCP Server
This is the traditional implementation where the MCP server communicates with clients through standard input/output (stdio). This approach is ideal for standalone command-line tools that can be integrated with MCP clients like Claude Desktop.
The easiest way to use the stdio-based implementation is through our published package:
# Using npx (recommended for most users)
npx @aimcp/tools
# Using uvx (faster startup)
uvx @aimcp/tools
2. HTTP-based MCP Server
MCP Hub also provides an HTTP-based implementation that allows AI assistants and other tools to connect to the MCP server over HTTP. This is implemented in the MCP Hub's API at /api/open/v1/streamable.
The HTTP endpoint is available at:
https://mcp.aimcp.info/api/open/v1/streamable
Usage
Prerequisites
- Node.js and npm (or pnpm/yarn) installed for the stdio-based implementation.
- An API key from MCP Hub (https://www.aimcp.info).
How to get an API key
- Go to https://www.aimcp.info.
- Sign up or log in.
- Navigate to your profile or account settings.
- Look for an option to generate or retrieve your API key.
- Or you can access here to generate an API key. NOTE: The API key has rate limits for 20 requests per hour.
Authentication
The MCP API requires authentication with a valid API key. This key must be provided via:
- For stdio-based implementation: The environment variable
MCP_HUB_API_KEY. - For HTTP-based implementation: The
Authorizationheader as a Bearer token.
Authorization: Bearer YOUR_API_KEY
Integration with AI Assistants and MCP Clients
Claude Desktop Configuration
To use MCP Hub with Claude Desktop:
-
Locate your Claude Desktop configuration file:
- Windows:
%APPDATA%\claude\config.json - macOS:
~/Library/Application Support/claude/config.jsonor~/.config/claude/config.json - Linux:
~/.config/claude/config.json
- Windows:
-
Add the following configuration:
{
"mcpServers": {
"mcp-hub": {
"command": "npx",
"args": ["@aimcp/tools"],
"environment": {
"MCP_HUB_API_KEY": "YOUR_API_KEY"
}
}
}
}
- Restart Claude Desktop to apply the changes.
- In your conversation, you can access MCP Hub tools by typing "@mcp-hub".
Cline and Other CLI Tools
For command-line based tools like Cline:
- Create a configuration file named
servers.jsonin your project directory:
{
"servers": [
{
"name": "mcp-hub-tools",
"command": ["npx", "@aimcp/tools"],
"environment": {
"MCP_HUB_API_KEY": "YOUR_API_KEY"
}
}
]
}
- Launch the tool with reference to this configuration:
cline --mcp-servers-config ./servers.json
For Tools Supporting Remote MCP Servers
Some newer MCP clients support direct HTTP connections. Configure them using:
{
"mcpServers": {
"mcp-hub-http": {
"url": "https://mcp.aimcp.info/api/open/v1/streamable",
"headers": {
"Authorization": "Bearer YOUR_API_KEY"
}
}
}
}
For Tools Using File-based Configuration (Cursor, etc.)
- Create a configuration file:
{
"mcpServers": {
"mcp-hub": {
"command": "npx",
"args": ["@aimcp/tools"],
"environment": {
"MCP_HUB_API_KEY": "YOUR_API_KEY"
}
}
}
}
- Reference this file in your tool's settings or launch with the appropriate configuration parameter.
Running Manually
You can also run the stdio-based server manually for testing (ensure MCP_HUB_API_KEY is set in your environment):
export MCP_HUB_API_KEY="YOUR_API_KEY_HERE"
npx @aimcp/tools
API Interface
This server interacts with the following MCP Hub API endpoint:
- Endpoint:
GET https://www.aimcp.info/api/open/v1/search - Authentication: Requires a Bearer token in the
Authorizationheader, using theMCP_HUB_API_KEY. - Query Parameter:
keywords(string)
Using the HTTP-based MCP API
MCP Hub provides an HTTP-based MCP server at /api/open/v1/streamable that implements the Model Context Protocol. This allows AI assistants and tools to search for MCPs and retrieve MCP information directly.
Connection Steps
- First, establish a connection to get a session ID:
GET /api/open/v1/streamable
Authorization: Bearer YOUR_API_KEY
Response:
{
"success": true,
"sessionId": "194830ab-eb0b-4d17-a574-af96705276c2",
"message": "Connection established. Use this sessionId for subsequent calls."
}
- Call a tool with the session ID:
POST /api/open/v1/streamable?sessionId=194830ab-eb0b-4d17-a574-af96705276c2
Content-Type: application/json
Authorization: Bearer YOUR_API_KEY
{
"jsonrpc": "2.0",
"method": "callTool",
"params": {
"name": "search_mcp_hub",
"arguments": {
"keywords": "example"
}
},
"id": "call-1"
}
Development & Deployment
Development
- Install Dependencies:
pnpm install - Build:
pnpm run build(compiles TypeScript to JavaScript inbuild/) - Watch Mode:
pnpm run watch(automatically recompiles on changes) - Testing with Inspector:
pnpm run inspector(runs the server with the MCP Inspector tool)
Creating Your Own stdio-based MCP Server
If you want to create your own stdio-based MCP server, follow these steps:
-
Set up your project:
mkdir my-mcp-server cd my-mcp-server npm init -y npm install @modelcontextprotocol/sdk -
Create your server implementation:
// index.ts
import { Server } from '@modelcontextprotocol/sdk/server';
import {
CallToolRequestSchema,
ListToolsRequestSchema,
McpError,
ErrorCode
} from '@modelcontextprotocol/sdk/types';
import { StdioTransport } from '@modelcontextprotocol/sdk/transports/stdio';
// Create an MCP server instance
const server = new Server(
{
name: "my-mcp-server",
version: "1.0.0"
},
{
capabilities: {
tools: {},
}
}
);
// Set up tool handlers
server.setRequestHandler(ListToolsRequestSchema, async () => ({
tools: [
{
name: 'my_tool',
description: 'Description of my tool',
inputSchema: {
type: 'object',
properties: {
param1: {
type: 'string',
description: 'Description of param1',
},
},
required: ['param1'],
},
},
],
}));
server.setRequestHandler(CallToolRequestSchema, async (request) => {
// Extract tool name and arguments
const toolName = request.params.name;
const args = request.params.arguments;
if (toolName === 'my_tool') {
// Validate arguments
if (typeof args !== 'object' || args === null || typeof args.param1 !== 'string') {
throw new McpError(
ErrorCode.InvalidParams,
'Invalid arguments. Requires "param1" (string).'
);
}
try {
// Implement your tool logic here
const result = `Processed: ${args.param1}`;
return {
content: [
{
type: 'text',
text: result,
},
],
};
} catch (error) {
return {
content: [
{
type: 'text',
text: `Error: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
} else {
throw new McpError(
ErrorCode.MethodNotFound,
`Unknown tool: ${toolName}`
);
}
});
// Connect the server to stdin/stdout
const transport = new StdioTransport();
server.connect(transport).catch(console.error);
-
Compile and run your server:
npx tsc node dist/index.js -
Test your server with the MCP Inspector tool:
npx @modelcontextprotocol/inspector
Deployment
- Ensure the server is built (
pnpm run build). - The
builddirectory contains the necessary JavaScript files. - The server can be run using
node build/index.jsor the commandmcphub_toolsif the package is installed appropriately (e.g., globally or linked). - Configure your MCP client/manager to point to the server executable and provide the
MCP_HUB_API_KEYenvironment variable.
You can also publish your MCP server to npm so others can install and use it.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。